

Anyagtudomány és Technológia Tanszék

Mechanikai tulajdonságok és vizsgálatuk II.

Egykristály és polikristály képlékeny alakváltozása

Anyagszerkezettan és anyagvizsgálat BMEGEMTBGA1

Az előadás során megismerjük

- A teljes (perfekt) és a parciális diszlokációkat;
- Egykristály képlékeny alakváltozásának szakaszait és mechanizmusait;
- Polikristályos test képlékeny alakváltozását.

🟹 att 🛛 Teljes (perfekt) diszlokációk

 A rácsszerkezet miatt a Burgers-vektorok nem lehetnek tetszőlegesek. Az olyan diszlokációkat, amelyeknek Burgers - vektorát két szomszédos atom határozza meg, teljes vagy perfekt diszlokációknak nevezzük.

Köbös rácsban az a[100], a/2[110] és a/2 [111] teljes diszlokációk vannak.

🖓 att 🔹 Diszlokációk találkozása

FKK kristályok (111) síkjában található 6 teljes, páronként ellentétes irányú diszlokáció Burgers-vektorai:

Ezek egyik reakciója (találkozása): $\frac{a}{2} \left[\overline{1}10\right] + \frac{a}{2} \left[1\overline{1}0\right] \rightarrow \vec{0}$

Diszlokációk találkozása

Diszlokációk energiája:

$$W_{cs} = Gb^2l$$

$$W_{\acute{e}l} = \frac{Gb^2l}{1-\nu}$$

Diszlokációk találkozásakor az eredő diszlokáció Burgers-vektora a két eredeti diszlokáció Burgersvektorának összege:

Általánosságban: W~b²

 ${m b}_e = {m b}_1 + {m b}_2$

Az eredő diszlokáció akkor stabil, ha energiája kisebb, mint a két eredeti diszlokáció energiájának összege: $W_e < W_1 + W_2$ azaz

$$b_e^2 = (b_1 + b_2)^2 < b_1^2 + b_2^2$$

Diszlokációk találkozása

$$\frac{a}{2} \left[\overline{1}10\right] + \frac{a}{2} \left[10\overline{1}\right] \rightarrow \frac{a}{2} \left[01\overline{1}\right]$$

Az energiamérleg:

Egy másik reakció:

$$\frac{a^{2}}{4}\left(\overline{1}^{2}+1^{2}+0^{2}\right)+\frac{a^{2}}{4}\left(1^{2}+0^{2}+\overline{1}^{2}\right)=a^{2}>\frac{a^{2}}{4}\left(0^{2}+1^{2}+\overline{1}^{2}\right)=\frac{a^{2}}{2}$$

Az új diszlokáció stabil, mert energiája kisebb, mint a létrehozó diszlokációk energiájának összege.

További reakció:
$$\frac{a}{2} \left[\overline{1}01\right] + \frac{a}{2} \left[0\overline{1}1\right] \rightarrow \frac{a}{2} \left[\overline{1}\overline{1}2\right]$$

Az energiamérleg:

$$\frac{a^2}{4}\left(\overline{1}^2 + 0^2 + 1^2\right) + \frac{a^2}{4}\left(0^2 + \overline{1}^2 + 1^2\right) = a^2 < \frac{a^2}{4}\left(\overline{1}^2 + \overline{1}^2 + 2^2\right) = \frac{3}{2}a^2$$

Az új diszlokáció instabil, mert energiája nagyobb, mint a létrehozó diszlokációk energiájának összege.

αtt Shockley-féle parciális diszlokáció

7

Rétegződési hiba

Energia

Fémek képlékeny alakváltozásakor kitüntetett kristálysíkok meghatározott kristálytani irányban elcsúsznak egymáson.

Egykristály képlékeny alakváltozása

att

Határozza meg aTKK egykristályban az **a** irányvektor Miller-indexét! Az irányvektor egyben az egykristály egyik csúszósíkjának normálvektora. Ábrázolja ezt a csúszósíkot, és határozza meg a síkhoz tartozó egyik csúszási rendszert és annak Schmid-tényezőjét, ha az egykristályra ható terhelő erő a **b** vektorral párhuzamos!

Csúszási rendszer: csúszósík és egy hozzá tartozó csúszási irány. Az elcsúszás a csúszósíkokon rétegesen jelentkezik.

A terhelőerő növekedésével a csúszósíkban fellép az ún. τ_{krit} kritikus csúsztatófeszültség, amelynél az adott csúszási rendszerben megindul a képlékeny alakváltozás. Alapvető feltevés, hogy egy rácstípus bármely csúszási rendszeréhez azonos kritikus csúsztatófeszültség tartozik.

Jellemző csúszási rendszerek:

 $t.k.k < 111 > \{110\}$ 12 db $f.k.k < 110 > \{111\}$ 12 db $l.i.h < 11\overline{2}0 > \{0001\}$ 3 db

att Egyszerű és többszörös csúszás

Egyszerű csúszás

Az **F** erő helyzete olyan, hogy a kristályban csak egy csúszási rendszeren indul meg az elcsúszás.

Többszörös csúszás

Ha egyidejűleg legalább két csúszási rendszeren indul meg az elcsúszás.

Egykristályok makroszkópikus alakváltozása szakításnál

Ón

Bizmut

Horgany

Egykristály feszültség–alakváltozás diagramja

Első szakasz

Egy csúszási rendszeren történik az elcsúszás. A kezdeti csúsztatófeszültség τ_0 kevéssé változik: $\theta_I \approx G/3000$ Az elcsúszás makroszkopikus formában is jól érzékelhető, ehhez nagyon sok diszlokáció szükséges. Egy diszlokáció **b** vektornyi elmozdulást okoz. Így 1 mm makroszkopikus elmozduláshoz **n** darab diszlokáció elmozdulása szükséges:

$$n = \frac{\Delta l}{b} = \frac{10^{-1} cm}{2 \cdot 10^{-8} cm} = 5 \cdot 10^{8}$$

Ennyi diszlokáció nincs az anyagban az alakítás elején.

Frank–Read-források által jönnek létre új diszlokációk.

αtt Frank–Read forrás működése

Második szakasz

Az új diszlokációk keletkezése miatt a csúsztató feszültség növekszik. Az alakváltozás miatt pedig megváltozik az erő és a kristály kölcsönös irányítottsága, a kristály úgy fordul, hogy legalább két csúszási rendszerben indul meg az elcsúszás. Ez a szakasz is közel lineáris keményedéssel jellemezhető:

A diszlokációk eloszlása nem egyenletes.

$$\theta_{II} \approx G/300$$

A keményedés oka: Cottrel–Lomer att gát

FKK rácsban két diszlokáció találkozik.

$$\frac{1}{2}[10\overline{1}]_{(111)} + \frac{a}{2}[011]_{(11\overline{1})} \rightarrow \frac{a}{2}[110]_{(001)}$$

$$\mathbf{n} = \frac{\mathbf{b} \times \mathbf{t}}{\left|\mathbf{b} \times \mathbf{t}\right|}$$

 $\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ t_1 & t_2 & t_3 \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = \frac{2}{2}\mathbf{k}$

Cottrel–Lomer gát

A Cottrell–Lomer-gátnál az eredő diszlokáció vonala a két csúszósík metszésvonala. Ez merőleges a diszlokáció Burgersvektorára, vagyis olyan éldiszlokáció, ami a (001) síkban van. Ez a sík az FKK rendszerben nem csúszósík, ezért az új diszlokáció nem mozog. További elcsúszáshoz más csúszási rendszerekben indul be az alakváltozás (Frank–Read-forrás). Ez többlet feszültséget igényel.

$$\tau = \tau_0 + \alpha \, b \, G \sqrt{\rho}$$

- τ_0 kezdeti folyási feszültség
- α konstans (0,3-0,6)
- *b* Burgers-vektor abszolút értéke
- G csúsztató rugalmassági modulusz
- ρ diszlokáció sűrűség

Harmadik szakasz

Az a jellemző, hogy a rögzített diszlokációkat megkerülik a mögöttük lévők. Ez a folyamat a keresztcsúszás.

A III. szakaszon az alakítás nagyobb feszültségszinten, de az ellentétes diszlokációk találkozása miatt kevésbé erőteljes keményedés mellett megy végbe. A görbe ezen szakasza parabolikus jellegű.

$$\tau = \frac{d\tau}{d\gamma} \sqrt{\gamma - \gamma_3}$$

A polikristályos testek sok szemcséből állnak, amelyeknek különböző az orientációja. A test folytonossága az alakváltozás során megmarad, ezért fel kell tételezzük, hogy minden szemcsében több csúszási rendszer működik (min. 5). Polikristályos test keményedése mindig intenzívebb, mint az egykristályé. Taylor elmélete szerint a makroszkópikus alakváltozás teljesítménye kifejezhető az egyes csúszási rendszereken végzett képlékeny teljesítmények összegével:

$$\bar{\sigma}\dot{\varepsilon}^{p} = \tau_{krit}\sum_{\alpha=1}^{n}\dot{\gamma}^{\alpha} \longrightarrow \frac{\bar{\sigma}}{\tau_{krit}} = \frac{\sum_{\alpha=1}^{n}\dot{\gamma}^{\alpha}}{\dot{\varepsilon}^{p}} = M$$

F.k.k rácsban M=3,06, t.k.k rácsban M=2,83.

A szilárdtest részeinek egy külső koordináta-rendszerhez képesti anizotróp elrendeződése.

A textúra mechanikai és kristálytani eredetű lehet.

A szemcsék orientációjának meghatározása:

 K_c – egyedi szemcse lokális koordináta-rendszere (x, y, z, ill. x'₁, x'₂, x'₃)

 K_s – makroszkopikus lemez koordináta-rendszere (hi, mi, ni, ill. x₁, x₂, x₃)

Speciális textúrák

Axiális textúra: a szemcsék elhelyezkedése olyan, hogy egy adott iránnyal párhuzamosan helyezkednek el.

Rúdhúzás, dróthúzás tipikus szerkezete <uvw>

Fogalmak

- Teljes (perfekt) diszkokáció
- Parciális diszlokáció
- Schokley-féle parciális diszlokáció
- Diszlokációreakció energiamérlege
- Csúszási rendszer
- Schmid-tényező
- Képlékeny alakváltozás I. szakasza
- Képlékeny alakváltozás II. szakasza
- Képlékeny alakváltozás III. szakasza

- Frank–Read-forrás
- Cottrell–Lomer-gát
- Keresztcsúszás
- Korlátolt oldhatóság
- Egykristály és polikristály kapcsolata
- Textúra
- Goss- és kockatextura
- Polikritályos test képlékeny alakváltozási mechanizmusai

William D. Callister, Jr.

Materials Science and Engineering An Introduction, 7th edition, 2006

Chapter 7 Dislocations and Strengthening Mechanisms 175-185 pp.