

Zai	Short designation		M Ú E G Y E T E M 1782
sign	Application Area	Main prop.	e.g.
S	Structural steel	R _{eH} (MPa)	S235
Р	Pressure vessel steel	R _{eH} (MPa)	P275
L	Pipe steels	R _{eH} (MPa)	
E	Steels for machines	R _{eH} (MPa)	E235
В	Steels for concrete	R _{eH} (MPa)	
			9

Zatt	Auxiliary	signs	M Ú E G Y E T E M 1782
Auxiliary signs Required impact energy			Temperature (°C)
27 J	40 J	60 J	()
JR	KR	LR	+20
10	КО	LO	0
J2	K2	L2	-20
J3	К3	L3	-30
J4	K4	L4	-40
J5	K5	L5	-50
J6	K6	L6	-60
			10

	according to chemical omposition	YETEM 1782		
Carbon steels: Alloyed steels:	C10, C40, C90, C120			
	14NiCrMo13-4			
high alloy steels:				
X8CrNiTi18-10				
Alloying elemer	t Multiplication f	factor		
Alloying elemer Cr, Co, Mn, Ni, Si,		factor		
	V 4	factor		
Cr, Co, Mn, Ni, Si,	V 4	factor		

Zatt

A: Thermomechanical rolled, weldable, fine-grained steels

- Thermomechanical rolling: controlled recrystallization during deformation
- Nb alloying increases the recrystallization temperature
- The grain refinement is promoted by Ti-alloying
- Auxiliary mark: M

• E.g.: S355M, S355ML

16

16

A: Thermomechanical rolled, weldable, fine-grained steels II

- Hydrogen resistant steels
- Problem: H makes the iron carbide dissociate
 - Higher temperatures speeds up the process (T>200°C)
 - Tensile stress speeds up the process

- Solution: stabile carbide producing alloying elements
 - Cr, Mo, V, W
- Better heat resistance, used in heat treated state
- Oil industry, refineries, hydrogen appliances
- HSLA steels

17

17

A: Atmospheric corrosion resistant (weathering) steels

- Atmospheric corrosion
- Cu, Cr, P, Ni, Mo alloying (low content!)
- Forming of phosphate, sulfate, hydroxide compounds – closes the pores, the corrosion stops.
- Passive layer, redbrown color, < 0.3 mm
- E.g.: S235J0W, S355J0WP

· Auxiliary mark: Q

Weldable but susceptible to cold cracking

• E.g.: S460QL

19

B: Weldable, fine-grained heat treatable steels

- Three sub-classes
- Room temperature quality (P...Q)
- Heat resistant quality (P...QH)
- Sub-zero toughness quality upto -40°C (P...QNL1), down to -50°C (P...QNL2)
- Micro alloying elements for grain refining and strengthening (Ti, Nb, V, N, B)
- Weldability is influenced by: thickness, input energy, design, welding process, electrode

2

25

C: Steels for cold forming

Formability, weldability

- D: Heat treatable steels
- E: Case hardening steels
- F: Nitridable steels

Other types of steels

26

26

C: Cold rolled flat products from low carbon steels for cold forming

- Low carbon content, ferritic steel
- Very low alloy content (+Al, Ti)
- DC01...DC06, : A, or B surface quality
- A: surface insufficiency (e.g. scratch) allowed
- B: no surface imperfection allowed
- Surface roughness grades
 - b: Shiny, g: semi-shiny, m: normal, r: rough
- E.g.: DC01Am

Zatt

C: Cold rolled flat products from low carbon steels for cold forming

- With less than 600 mm, thickness lass than 10 mm unalloyed and alloyed steel band
- Designation:
 - Annealed (A)
 - Cold rolled (C)
 - Skin passed (LC)
 - reducing the possibility of formation of flow lines
- · Surface quality MA, MB and MC
- E.g.: DC03C440MB

28

28

C: Hot rolled high strength steel flat products for cold forming

- For cold forming, hot rolled, weldable high strength, alloyed
- Thermomechanical or normalizing rolled
- Low perlite steels (Ti, Nb, V) HSLA
- E.g.: S420NC, S460MC
- Formable, shearable, bendable, machinable
- Welded structures, automotive industry

29

29

Dual Phase steels

- Very hard martensite finely distributed in soft ferrite matrix
- Good strength, good formability
- Wheels, car body, bumper, wires, building structures

https://www.phasetrans.msm.cam.ac.uk/2008 dual.html

D: Unalloyed Heat treatable steels

- Only carbon, no additional alloying element (except elements from production)
- Higher toughness, lower strength
- Small trough hardening diameter
- Wear resistance can be improved by surface quenching
 - R_m: 500...1000 MPa,

 $\rm \textit{R}_{eH}^{...}$: 300-580 MPa, A: 20-11%, Z: 50-20%

• designation: Cnn, where nn = C%

• Auxiliary marks: E: S < 0.035%,

R: 0.020 % < S < 0.040%

37

37

Z∫att

D: Alloyed Heat treatable steels I.

- Mn (1.4-1.65%)
 - Cheap
 - Increased through hardening diameter
 - Susceptibility to over heating and embrittlement during tempering (fast cooling necessary)
 - Must not be used for parts with service temperature below 0°C
 - E.g.: 28Mn6

38

38

∌att

D: Alloyed Heat tretable steels II.

- Most common alloying element
- Strongly Increases the through hardening diameter and yield stress 10
- Good surface hardenability
- For low to middle stresses, engine parts, axles
- E.g.: 34Cr4

🔀 🗖 tt D: Alloyed Heat treatable steels III.

- Cr-Mo (up to 2% Cr, 0.9-1.2% Mo)
 - Mo eliminates the embrittlement during tempering
 - Cr and Mo are strong carbide-forming elements, tempering at higher temperatures (~600°C)
 - Significant strength and good toughness
 - For middle sized part for high fatigue and impact loads.

Axles, parts with teeth

• E.g.: 50CrMo4

40

D: Alloyed heat treatable steels IV.

- Cr-V (0.7-1.1% Cr, 0.1-0.2% V)
 - Similar to Cr-Mo steels
 - A little cheaper but worse ductility
 - For middle sized part for high fatigue and impact loads.
 - E.g.: 51CrV4

41

Zatt D: Alloyed heat treatable steels V.

- Ni-Cr-Mo(-V)
- (0.7-1.1% Cr, 0.1-0.2% Mo)
 - Large sized parts where the fast cooling can not be realized.
 - Ni decreases the ductile to brittle temperature (DBTT)
 - Mo eliminates the embrittlement during tempering
- Through hardening diameter increases significantly (~150 mm)
- Engine parts, crankshaft, quenched & tempered state
- E.g.: 36NiCrMo16

- Boron steels
 - Mn, Mn-Cr alloying, B micro alloying
 - Through hardening diameter increases significantly
 - Delivered generally in hot formed state
 - Good toughness
 - E.g.: 20MnB5, 27MnCrB5-2

43

E: Alloyed case hardening steels

- Alloying elements are the same as those of heat treatable steels
- Low carbon content, C<0,2%
- Cr-Mo alloying for middle sized and loaded parts (bush, pin, gears)
 - Susceptible to overheating, up to the diameter of 40-60 mm
- Mn-Cr-Mo alloying for highly loaded parts (gears, chain wheels, axles)
 - Up to the diameter of 70-80 mm
- Ni-Cr-Mo alloying for extreme strong dynamic loads tough core, high surface hardness

47

47

A: hot rolled structural steels B: flat steel products for pressure vessels Formability, weldability C: Steels for cold forming D: Heat treatable steels E: Case hardening steels F: Nitridable steels Other types of steels

Zatt

Spring steels II.

- Heat treated springs from hot rolled steels by forming
 - \bullet Si alloying, $\rm R_{\rm eH}$ increases
 - Cr-V, Cr-MoV high performance, high dynamic loads
 - E.g.: 38Si7, 60SiCrV7, 60CrMo3-2
- Cold rolled narrow steels trip for heat treatment
 - Good surface quality, Rm up to 2100 MPa
 - E.g.: C75S
- · Corrosion resistant steels strip for springs
 - · For corrosive media

55

55

Steels and nickel alloys for cryogenic, low-temperature and heat resistant application

- Unalloyed / alloyed (corr. resistant too)
- Applicable up to 900°C
- Mo: carbide-forming increases strength
- The corrosion must be taken into account beside of heat-loading.
- E.g.: 42CrMo5-6, 25CrMo4, NiCr20TiAl (Ni alloy), X10CrNiMoMnNbVB15-10-1
- Ni alloying for low temperatures
- E.g.: 41NiCrMo7-3-2, X8Ni9, X6CrNi18-10

56

56

Heat resistant steels and Ni-alloys

- Problem: Oxidizing of steels' surface over 500°C
- Austenitic, ferritic, austeniticferritic steel
- Creep resistance and strength are the characteristic properties
- Alloying with Cr, Si, Al
- Applicable even at 900°C
- Grain coarsening can be a problem
- Ni based superalloys (not iron alloys!)

- Grain coarsening is not significant even at higher temperatures, between 600-800°C the $\sigma\text{-phase}$ causes brittlement, e.g.: X10NiCrAlTi32-21
- Austenitic-ferritic
 - Not common
 - In oxidizing S-containing environment, e.g.: X15CrNiSi25-4
- · Ni alloys
 - Jet engines, rocket industry, e.g.: NiCr23Fe

58

Zati General requirements • Hardness, wear resistance

- Toughness
- Heat resistance
- Resistance against thermal fatigue
- Appropriate through hardening diameter

Zatt

B: Hot forming tool steels

- Service temperature over 200°C, but hardness and heat resistance even at 600°C (38-46 HRc)
- Main alloying elements: Cr, Mo, W, Ni, Co
- Carbide compounds hardness at high temperatures
- Closed-dies for forging, die-casting dies
- E.g.: 55NiCrMoV7, X40CrMoV5-1

70

70

Zatt

C: Cold forming tool steels

- Main alloying elements: Mn, Cr, Mo, V, W, Ni
- To increase through hardening diameter and improve
 - Strength
 - Wear resistance
 - Hardness
- Heat-treated. Service temperature at room temperature (maximum 150-180°C)
 - E.g. Cutting and punching tools
 - E.g.: 95MnWCrV5, X210CrW12

71

71

E: High speed steels

- \bullet For high performance machining. 62-64 HRc hardness at $^{\sim}600^{\circ}\text{C}$
- Main alloying elements : W, Mo, V, Co
- Special heat treatment methodology (precipitation hardening)
- E.g.: HS6-5-2, HS10-4-3-10

Zatt NOCCYCTEN 1702	
Thank you for your attention!	
73	