

Liquid Penetrant Testing

Principles of Penetrant Fluid Mechanics & Inspection Applications

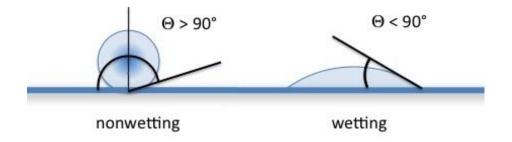
Liquid Penetrant (LP) Detection System

- Consists of:
 - Fluid mechanics on surface accumulation of liquid at discontinuity
 - Recognition system sufficient contrast between background and fluid
- Applies to non-porous materials
- Can only detect flaws open to a surface:
 - Cracks, seams, cold shut, porosity, etc.



Fluid Mechanics on Surfaces

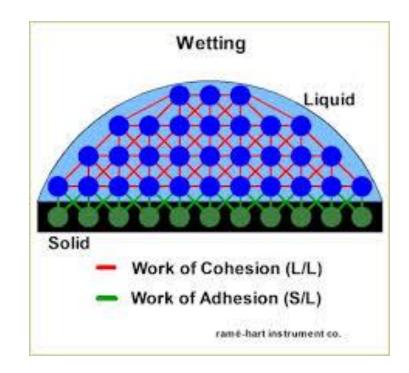
- Two main areas of focus
 - Surface Tension
 - Capillarity



Contact Angle

- Slope of a liquid relative to solid surface
- Wetting Ability
 - Ability of a fluid to spread uniformly over another surface
 - Measured by the contact angle

• As θ increases, wetting ability decreases



Cohesive & Adhesive Force

Cohesive

- Intermolecular forces within a liquid that resist separation (attraction between liquid particles of the same type)
- Adhesive
 - Attractive forces between unlike molecules (force that acts between the fluid particles and solid interface)
 - Caused by mechanical and electrostatic forces

Force Balance

- For adhesive forces >> cohesive forces
 - Contact angle < 90°
 - Molecules more attracted to surface than each other
 - Good wetting ability
- For cohesive forces >> adhesive forces
 - Contact angle > 90°
 - Molecules more attracted to each other than surface
 - Poor wetting ability

Viscosity

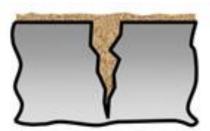
- A fluid's resistance to deformation caused by shear stress
- Caused by friction between particles in a fluid that are moving at different velocities
- Plays a crucial role when it comes to LARGE cracks

Effect of Temperature on Penetrant

- Ideal temperature for LP inspection lies between 10 and 50°C (40 and 125°F)
- As temperature increases, surface tension decreases, which increases wetting ability

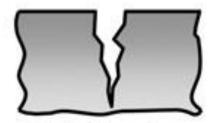
Fluid Mechanics Conclusions

- Satisfactory penetrant testing depends on:
 - Surface tension and density of fluid
 - Contact angle
 - Function of both fluid and material
 - Dependent upon cleanliness of part
 - Viscosity
 - Determines overall inspection time
 - Cavity size
 - Smaller width results in more penetrant drawn into cavity

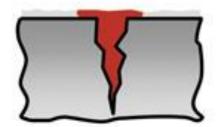

Basic Steps in Penetrant Inspection

- 1) Pre-cleaning
- 2) Penetrant application
 - Dwell time
- 3) Penetrant removal
- 4) Developer application
 - Time
- 5) Inspection
- 6) Post cleaning

Basic Steps in Penetrant Inspection


1 Crack filled with dirt

3 Application of penetrant

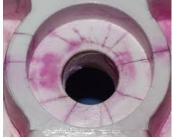

5 Application of developer 6 Cra

2 Ideally cleaned

4 Intermediate cleaning

6 Crack indication

Pre-cleaning


- Types of pre-cleaning processes
 - Alkaline
 - Steam
 - Vapor degreasing
 - Solvent wash
 - Acid etch
 - Paint stripper
 - Ultrasonic
 - Detergent
- Mechanical methods should be avoided as they smear and/or embed material in/on a flaw (sandblasting, grinding, etc.)
- Surface should be CLEAN and DRY before applying penetrant

Penetrant Application

- Penetrant can be applied via spraying, pouring, dipping, swabbing, brushing over entire surface
- Types of Penetrant:
 - Visible [Type I] red indication on white background (developer)
 - Low sensitivity
 - Must have lighting
 - No power required

- Fluorescent [Type II] bright yellow-green indication activated by UV light
 - High sensitivity
 - Power is required for UV light
 - Dark conditions are a must

Penetrant Removal

Types and Methods:

- Water-washable (WW): Reference ASTM E-1209/1418
 - Temperature should not exceed 43°C (109°F)
 - Angle of spray should be between 45° and 70°
- **Post-emulsifiable** (PE): Reference ASTM E-1208/1210
 - <u>Hydrophilic</u>: reacts with oil-based penetrant removable by scrubbing action and water rinse – can be reused
 - <u>Lipophilic</u>: oil soluble, diffuses into oil and breaks down structure removable by water rinse
- **Solvent-removable** (SR): Reference ASTM E-1219/1220
 - Done by wiping with a cloth dampened with solvent
 - Good for "spot checks"

Comparison of Penetrant Examination Methods

- Water-washable
 - Least expensive
 - Low sensitivity
 - Not suitable for shallow flaws
 - Good for rough surfaces (threads)
- Post-emulsifier
 - Used only for Type II (fluorescent) penetrant
 - More expensive
 - Suitable for shallow flaws
 - Good for smooth surfaces
- Solvent-removable
 - Most expensive
 - Used for smooth, small-area surfaces

Developer Application

- Two requirements:
 - Developer must attract penetrant out of crevice by capillary action
 - Developer must create a viewing background that contrasts with the appearance of the penetrant
- Too thin of a layer and the developer will not absorb the penetrant
- Too thick of a layer and the developer will mask the penetrant
- 4 types of developers:
 - Dry powder
 - Aqueous (wet) powder-suspension
 - Water soluble
 - Solvent-suspendible (Nonaqueous)

Dry-Powder Developer

- Used for fluorescent penetrants
- High resolution
- Part must be dry
- Least sensitive
- Inexpensive
- Easy application

Aqueous Powder-Suspension Developer

- Applied right after washing step, before part is dried
- Not suitable for rough surfaces
- Used for high-volume inspections
- More sensitive to smaller cracks
- Requires drying system
- Must be stirred or agitated

Water Soluble Developer

- Contains water soluble crystalline substances that recrystallize into the developer film
- Applied directly after washing process, before part is dried
- Good sensitivity to small cracks
- Used for smooth surfaces
- Low resolution
- Must be dried quickly

Solvent (Nonaqueous) -Suspendible Developer

- High sensitivity
- May be applied to both fluorescent penetrant types
- Highest sensitivity
- Dries quickly on its own

Harmful Effects of Penetrants

- Chlorides are known to attack various high strength/high temperature alloys and cause crack initiation.
 - Nickel-based alloys
 - Austenitic stainless steels
 - Titanium
- Sulfur and Halogen known to be present in penetrants
 - Initiate cracking if left in crevices of materials listed above
 - Levels of these elements must be closely monitored