

Department of Materials Science and Engineering

Introduction

Nondestructive Testing of Materials (BMEGEMTAGE2) 08. 09. 2022.

Department of Materials Science and Engineering

Department of Materials Science and Engineering

Head: Prof. Peter J. Szabó Homepage: www.att.bme.hu

- Student administration:
 - MT building, first floor (dr. Tibor Berecz)
 - MT building, ground floor (dr. Dorina Kovács)

Education in the Department of Materials Science and Engineering

BSc

Basic subjects: Materials Science and Testing Metals and Ceramics Technology

Specialization:

Materials Forming Welding Heat Treatments Non-destructive Testing Quality Assurance

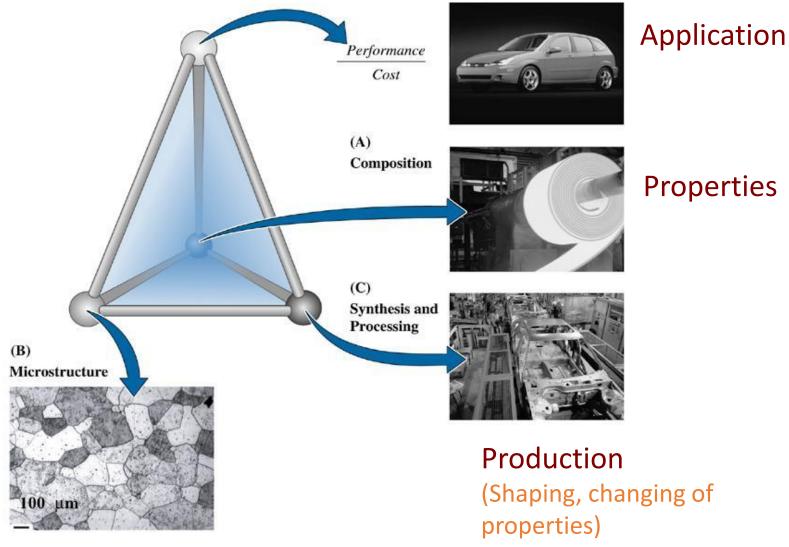
MSc

Basic subject: Materials Science Specialization:

Materials Forming Welding Metallurgy, powder metallurgy FEM Engineering (MSC MARC) Ceramics, Composites Biomedical Materials Corrosion Fatigue, Fracture Microstructural Investigation

Materials Science

The connection between the materials properties and the structure of the materials, "WHY".


Materials Technology

Using the connections above, we can plan and construct materials for different purposes, "HOW".

Materials science vs. materials technology

Microstructure (How the material looks like?)

- Mechanical (effect of loading and strain)
- Electronic (effect of electrical field)
- Thermal (effect of heat)
- Magnetic (effect of magnetic field)
- **Optical** (effect of electromagnetic field)
- **Damage** (chemical reactivity)

- Due to loading the materials by a certain energy, the structure (and therefore the properties) of the materials may change.
- The structure of the material is changed intentionally
 → materials *technology*.
- The structure of the material is changed during operation → *degradation* due to operational *loading*.
- Loading can be classified according to the type of the energy of the loading.

Loadings I.

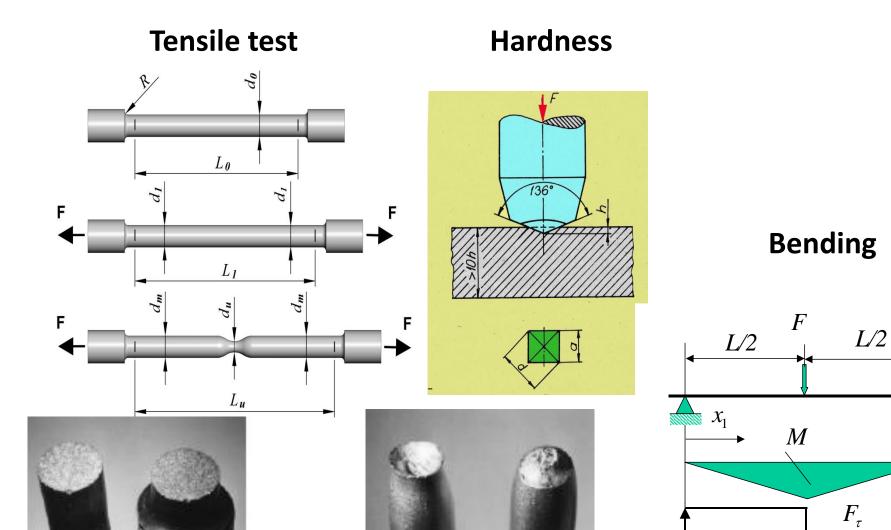
- Mechanical loading
 - Static
 - Dynamic
 - Periodic
 - Deformation, wear, fracture, fatigue, creep, etc.
- Thermal loading
 - Thermally activated processes
- Chemical loading
 - E.g. corrosion
- Irradiation
 - Fast neutron irradiation

Loadings II.

- Electric effects
 - Contacts, arcs
 - Heating due to electric current
 - Piezzoelectric effect
- Biological effects
 - Application in special environments
 - Microbiological attacks
- Combined effects

During materials testing an excitation is given to the material, and the response of the material to it is detected.

Excitation

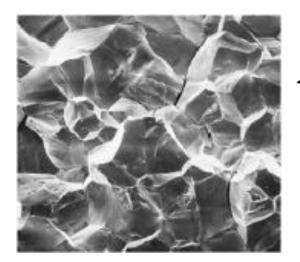


- Mechanical
- Electrical
- Magnetic
- Optical
- Radiation
- Thermal
- Combined

Mechanical testing

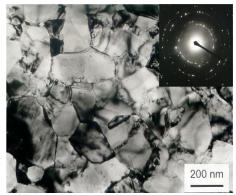
14

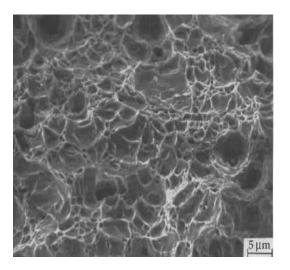
- Mechanical
 - Determination of the mechanical properties of the materials: yield stress, strength, ultimate stress, elongation, contraction
- Chemical
 - Determination of the chemical composition
- Physical
 - Determination of physical properties (conductivity, magnetic properties, thermal expansion, etc.)
- Crystallographical
 - Determination of the crystalline structure
- Imaging methods
 - Forming an image of the material (optical microscope, electron microscope, atomic force microscope, etc.)
- Metallographic methods
 - Determination of microstructure, grain size, inclusions, etc.

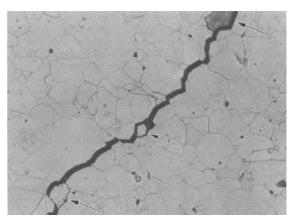

Microscopy

Scanning

Electron microscope


Transmission


м Ű Е G Y Е Т Е М 1 7 8 2


Brittle behaviour

Ductile behaviour

Optical microscope

Zatt Materials testing methods II.

- Static tests
 - Tensile, compressive, bending, (static) hardness
- Dynamic tests
 - Charpy test
 - Brittle, ductile behaviour
 - Dynamic hardness tests
- Technological tests
 - Reactions against different technological steps
- Nondestructive tests

- Definition I. (strict)
 - After the test the investigated part can be used in its original form for its original purpose
- Definition II. (more flexible)
 - The specimen is not deteriorated during the test (however the original part can not always be used for its original purpose, e.g. because we had to cut a small piece for the test)

- Visual inspection
- Liquid penetration
- Test with magnetic powder

NDT methods (Def. I.)

- Eddy-current methods
- Ultrasonic methods
- Radiography
- Acoustic emission
- Porosity test
- •

- Optical microscopy
- Confocal laser microscopy
- Acoustic microscopy
- X-ray diffraction
- X-ray microscopy
- Electron microscopy (SEM, TEM)

NDT methods (Def. II.)

- Scanning tunneling microscopy
- Atomic force microscopy