

Metal Forming

Guidelines for the semester projects

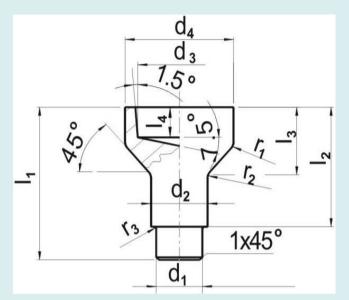
BSc - 2023/24-1

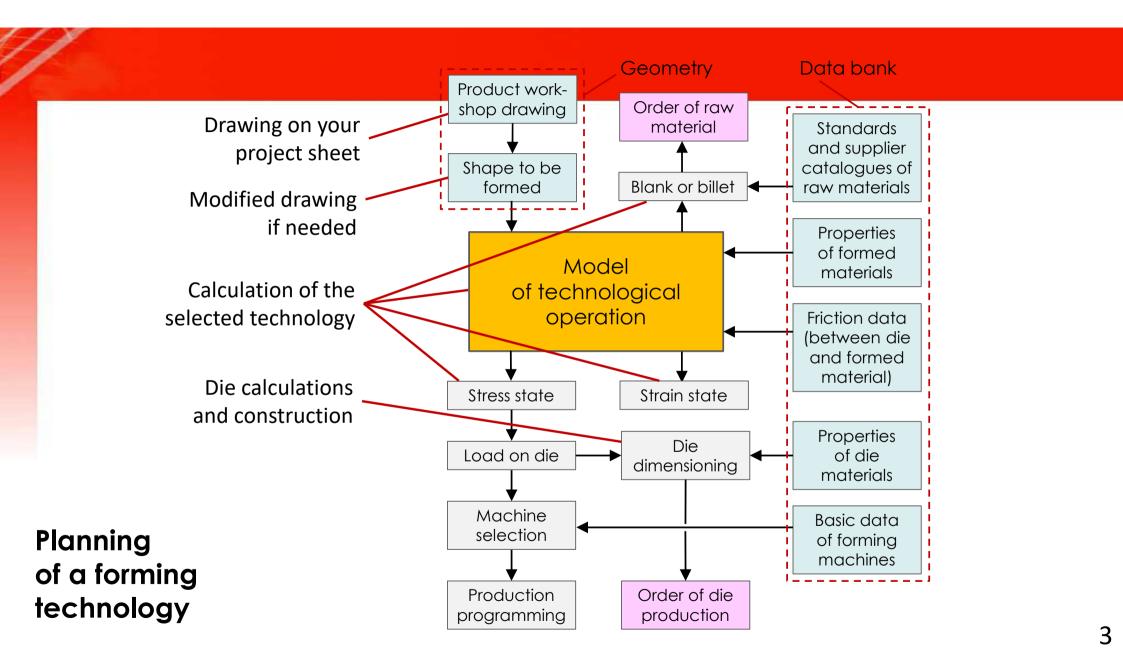
Ver. 7

Task

Project sheet

Step zero: Draw the real workpiece!


- Plan the forming technology for the workpiece according to the figure, using the data and material below.
- 2. Design the die of the last forming step.

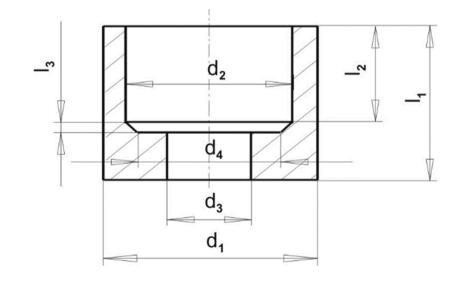

Report Content

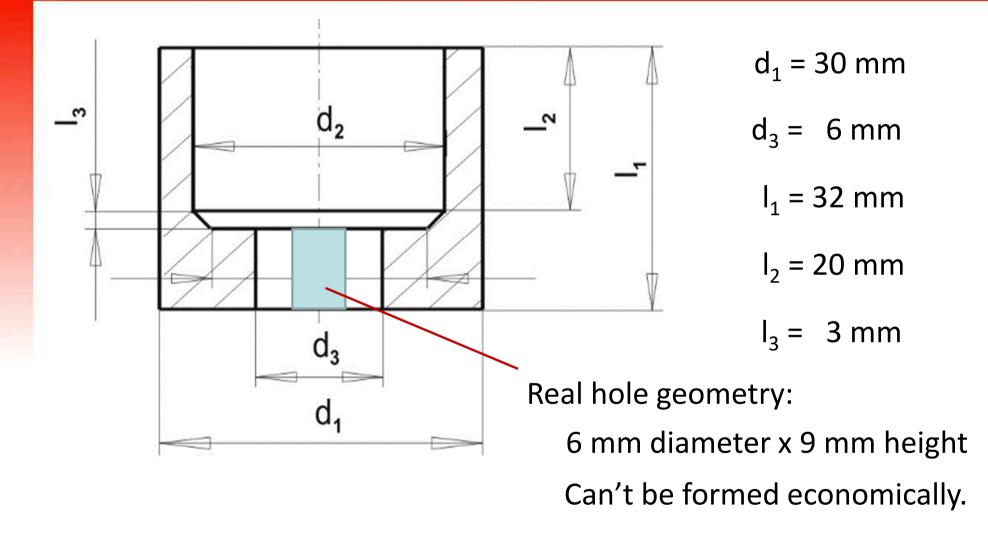
- Issued project task sheet
- Description of forming steps with figures
- Details of calculations: analytical and (FEM)
- Drawings: full die assembly drawing of the final forming step
- Heat treatment of active die elements
- Sources (author/title/editor/date or URL/date

Data: Material: AI99.5

d ₁ = 15	$l_1 = 90$	r ₁ = 1
d ₂ = 15	$l_2 = 80$	$r_2 = 3$
d ₃ = 20	$l_3 = 40$	$r_{3} = 3$
d ₄ = 26	$l_4 = 0$	$r_4 = -$

1. Draw the proportional real workpiece using the given data (see your project sheet)

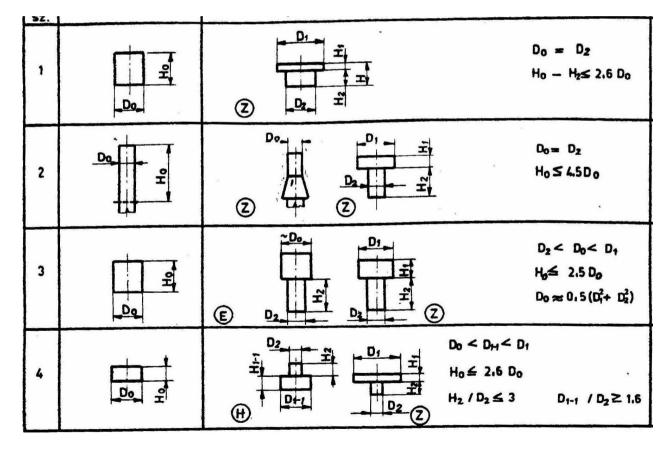

2. Check of product drawing (see your sheet)

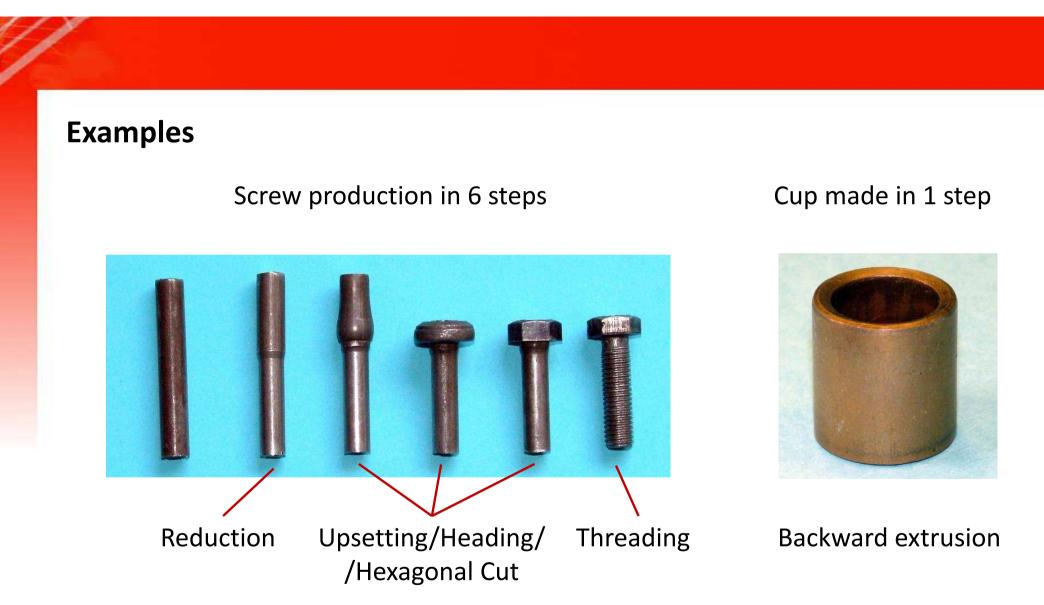

Can it be made by forming? Is it necessary and/or possible to change the shape?

Example:

Can the hole at the bottom be formed? It depends on the diameter, height, and their ratio.

If not, the hole has to be filled and manufactured later by cutting.


3. Select the forming technology


Use the "assistance sheets" on the web of subject.

The given tasks can be performed by one of the following technologies

or their combination:

- Upsetting
- Reduction
- □ Forward extrusion
- □ Backward extrusion

4. Steps of technology calculation

- $\hfill\square$ Calculation of product volume with additions if needed
- □ Selection and calculation of the initial shape (standards and catalogues)
- □ Calculation and control of the geometrical limits (e.g. for plastic buckling in case of upsetting a cylinder, the ratio of height and diameter shall be less than 2.3)
- □ Calculation of strain (e.g. at upsetting a cylinder, the equivalent strain comes from the following equation: $\varphi = \ln \frac{l_0}{l_0}$ or $\varphi = 2 \ln \frac{D}{d}$
- \Box Calculation of the flow stress (from equation or diagram, e.g.: $\sigma_f = C_0 + C_1 \varphi^n$
- □ Calculation of the forming pressure, then the forming force, loading the machine
- Calculation of loading stresses on critical die elements, then dimension them (e.g. in the case of extrusion, dimension the punch for axial stress and elastic buckling, and the recipient for internal pressure)
- □ Optional: Control your calculations by the QForm (or other) simulation program.

5. Steps of die dimensioning and construction

- □ Make a freehand sketch on the die construction for consultation
- □ Selection of die house from the market
- Drawing of the assembly plan based on the confirmed freehand sketch and consultation
- Compile the list of elements on the assembly plan (name, number, material standard – if exists - and heat treatment reference of the elements)
- Prepare the heat treatment instructions (these are orders, not wishes) for the active die elements, based on the die material manufacturers data, and in addition the preliminary surface treatments of the workpiece if needed
- Compile the report describing the calculations and other main elements of your work, including the project sheet, a summary and the list of used resources.

Recipient (ring) dimensioning

The recipient is a short tube having thick wall. For the calculation of the wall thickness and the reinforcement (if needed) use the relevant Excel file from the web page of the subject. After opening the file you see the last calculation:

calculate	SZÁMOL							
(double click)	Rk:	52,69592		amin:	2,634796		p1max:	900
				mi		51.1		
	n	ki	Ei	mi	ai	Rbi	di	
		1500	210000	0,3	1,651446	20		
		1400	210000	0,3	1,595448	33,02891	0,133688	
			210000	0,3				
			210000	0,3				
			210000	0,3	p.			

Recipient (ring) dimensioning

Clear the cells containing the data of the previous calculation.

SZÁMOL							
Rk:			amin:			n1may:	
Ν.			allill.			p1max:	
n	ki	Ei	mi	ai	Rbi	di	
	1500	210000	0,3		20		
	1400	210000	0,3				
		210000	0,3				
		210000	0,3				
		210000	0,3				

Recipient (ring) dimensioning

Fill the Rbi (inner radius) and p1max (internal pressure) cells then double click on the SZÁMOL cell to run the calculation.

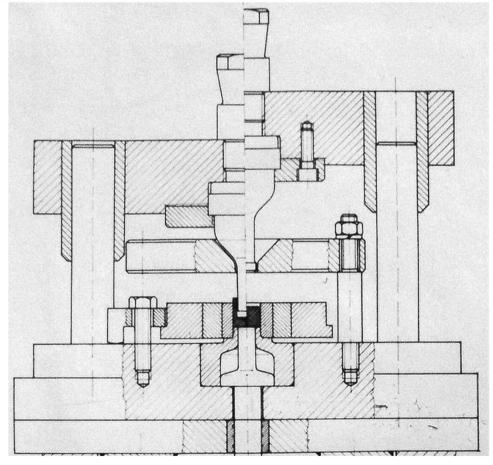
	SZÁMOL							
calculate								
(double click)	Rk:	48,30459		amin:	3,220306		p1max:	1000
	n	ki	Ei	mi	ai	Rbi	di	
		1500	210000	0,3	1,825742	15		
		1400	210000	0,3	1,763834	27,38613	0,12389	
			210000	0,3				
			210000	0,3				
			210000	0,3				

Die house from a catalogue

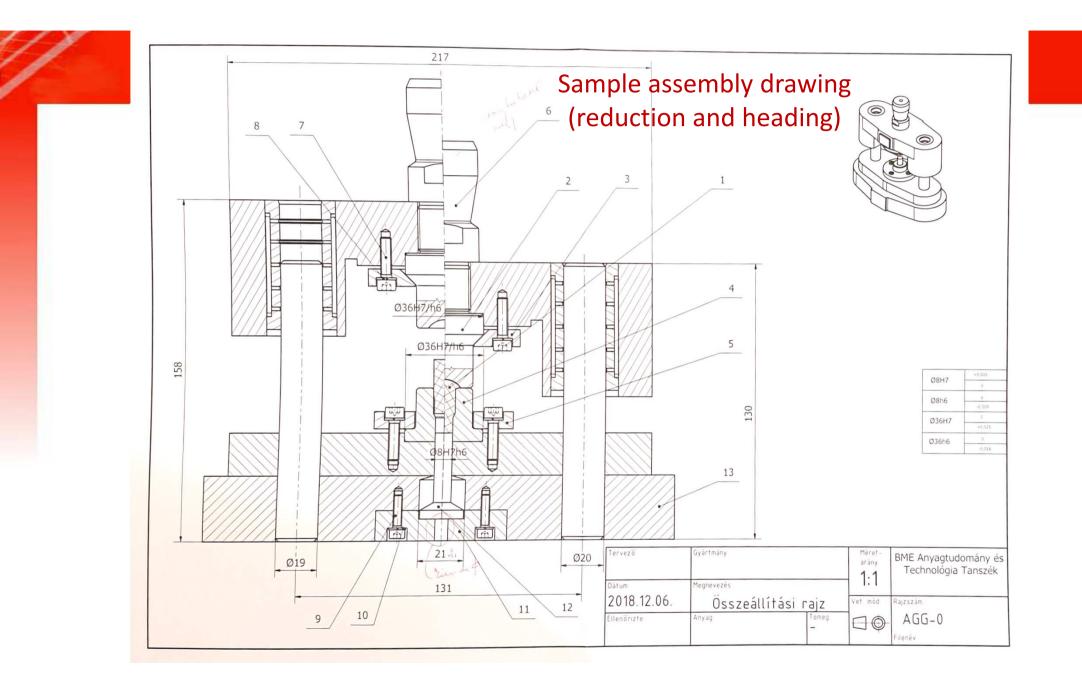
STEINEL Säulengestelle ST 100.

Runde Arbeitsfläche Mittig stehende Führungssäulen Dünnes Oberteil

DIN 9812

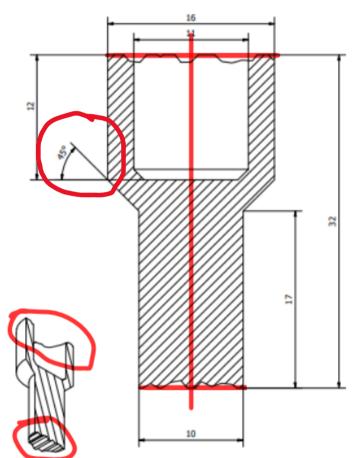

Form D: Oberteil ohne Gewinde Form DG: Oberteil mit Gewinde

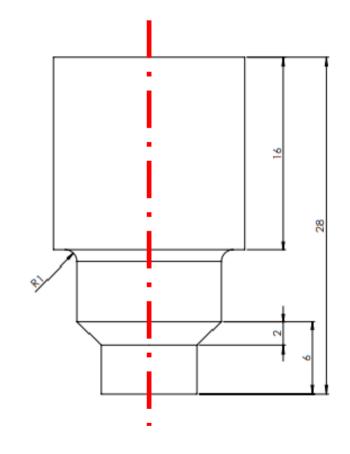
Werkstoff: Sondergrauguß GGL, legiert und ultraschallgeprüft.

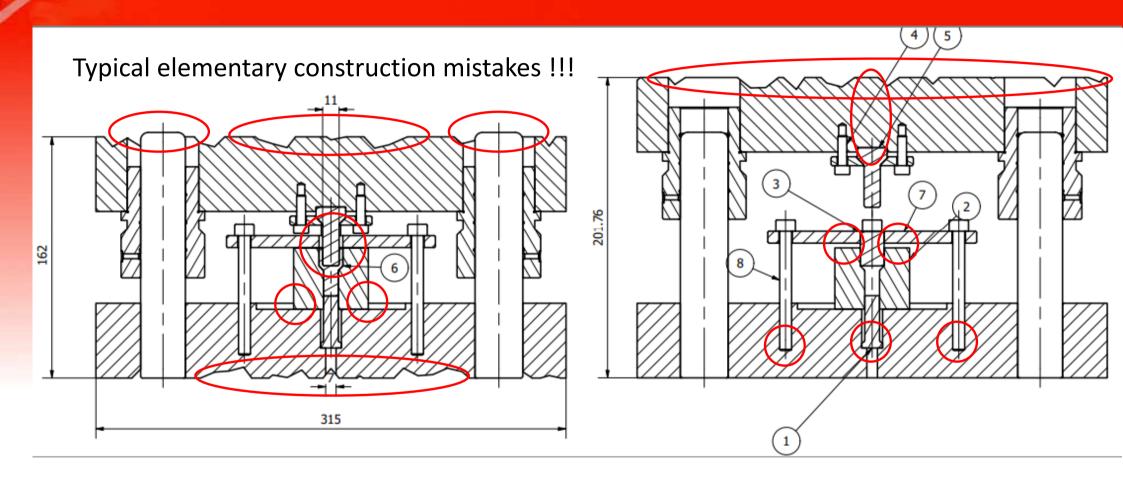

Für alle Gestell-Größen sind Zeichnungsvorlagen im Maßstab 1 : 1 zum Selbstkostenpreis lieferbar, siehe betreffende Seite.

Einspannzapfen siehe betreffende Seite.

Bestellbeispiel: Säulengestell mit Gleitführung Stahl bronzeplattiert Oberteil ohne Gewinde ST 1001 Arbeitsfläche D = 125 mm Ergänzung 125 Bestell-Nummer ST 1001.125


Assembly drawing (backward extrusion)




Sample list of elements

201812.06 Darabje		Megnevezés: Darabjegy Anyag:	/zék		lansz Rajzszám:	ек	
Tervező: Gyártmány:					Méret- arány:	BME Gép és Terméktervezés Tanszék	
Tsz	Db	٢	legnevezés	Méret	Rajzszám	Anyag	Tömeg
1	1	M	Munkadarab		AGG-1	C10	0,03 kg
2	1		Bélyeg		AGG-2	X210CrW12	0,03 kg
3	1	Felső	Felső rögzítőgyűrű			S235	0,03 kg
4	1		Matrica	Ø36×25	AGG-3	X210CrW12	0,14 kg
5	1	Alsó	rögzítőgyűrű	Ø62×16	1	S235	0,03 kg
6	1	В	efogó csap	M24×79	Steinel SZ-40-35		0,05 kg
7	8	B	kny. csavar	M6×25	DIN 4762	5.6	0,02
8	8	R	ugós alátét	Ø9,2	DIN 128	Fst	0,01
9	4		kny. csavar	M5×20	DIN 4762	5.6	0,02
10	4	R	ugós alátét	Ø7,2	DIN 128	Fst	0,01
11	1		Alaplap	Ø30×14		S235	0,04
12	1		Kilökő	Ø6×40	AGG-4	X210CrW12	0,03 kg
13	1	S	zeszámház	217×158	SteinelST 1001-80		3 kg

Typical drawing mistakes !!!

Always check the validity of the results after each calculation !!!

Textbooks and resources

- Department of Materials Science and Engineering webpage: <u>www.att.bme.hu</u>
- Heinz Tschaetsch: Metal Forming Practise
- S. Kalpakjian, S.R. Smith: Manufacturing Engineering and Technology
- W. D. Callister: Materials Science and Engineering, An Introduction
- Assisting documents on the department web site.