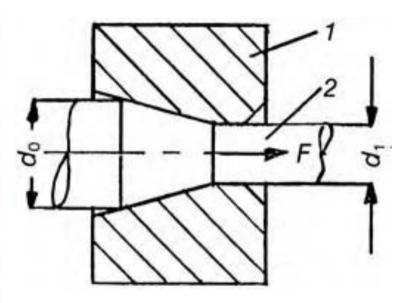



# Wire, rod, and pipe drawing

### Overview

#### Wire/rod drawing


application
deformations, drawing speeds and forces
equipments, dies and die materials

#### **Tube drawing**

tube drawing processes strain and drawing force drawing tools

Lubrication Defects

### Wire drawing



A wire of a larger size is pulled through a drawing ring of a smaller size.

• coarse drawing: d = 16 to 4.2 mm

• medium drawing: d = 4.2 to 1.6 mm

• fine drawing: d = 1.6 to 0.7 mm

• ultra-fine drawing: d < 0.7 mm

According to the machine used (continuous operation):

- single-draft drawing
- tandem drawing

The machines are operating continuously.

### Stock, application

**Starting stock** wire drawing: hot-rolled wires

rod drawing: rods produced by hot rolling or

extrusion

#### **Application**

wires and rods with smooth surfaces and low tolerances.

| Material                          | Application                                                                           |
|-----------------------------------|---------------------------------------------------------------------------------------|
| Low-carbon steels<br>C 10 – C22   | Wires, wire meshes, barbed wire, pins, nails, screws and bolts, rivets                |
| High-carbon steels (up to 1.6% C) | Rod material for automatic processing, wire cables                                    |
| Alloyed steels                    | Industrial springs, welding wires                                                     |
| Cu and Cu alloys                  | Wires, wire meshes, screws, bolts and shaped parts, parts for the electrical industry |
| Al and Al alloys                  | Screws and bolts, shaped parts, electrical lines, etc.                                |

### **Deformations**

Strain

$$\varphi = ln \frac{A_0}{A_1}$$

 $A_0$ : cross-section before drawing  $A_1$ : cross-section after drawing

#### Permissible deformations

| Material    | Intake<br>strength<br>R <sub>m</sub> | Intake<br>diameter<br>d <sub>0</sub> | Drawing reduction between two draws, $\varphi$ | Total deformation $\varphi$ | Number of drawing stations |
|-------------|--------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------|----------------------------|
| Steel       | 400                                  | 4 – 12                               | 0.18 – 0.22                                    | 3.80 – 4.00                 | 8 to 21                    |
| Ste         | 1200                                 | 0.5 - 2.5                            | 0.12 - 0.15                                    | 1.20 - 1.50                 | 0 10 21                    |
| 7 8         | soft                                 | 8 – 10                               | 0.40 - 0.50                                    | 3.50 - 4.00                 |                            |
| Cu<br>alloy | 250                                  | 1 – 3.5                              | 0.18 - 0.20                                    | 2.00 - 3.00                 | 5 to 13                    |
| Al alloy    | soft                                 | 12 – 16                              | 0.20 -0.25                                     | 2.50 – 3.00                 | 5 to 13                    |
| A A         | 80                                   | 1 – 3.5                              | 0.15 - 0.20                                    | 1.50 – 2.00                 |                            |

#### **Deformations**

Reductions of higher than 45% may result in lubricant breakdown, leading to surface-finish deterioration.

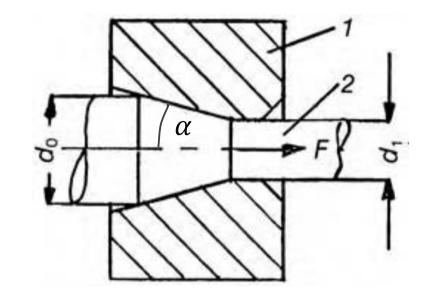
#### Sizing pass:

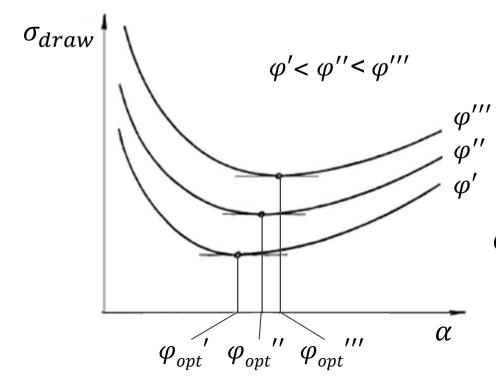
Light reduction to improve surface finish and dimensional accuracy. It basically deforms only the surface layers, so it produces highly non-uniform deformation of the material and its microstructure. The properties of the material will vary with location within the cross section.

#### **Bundle Drawing:**

Drawing many wires (hundred or more) simultaneously as a bundle. The cross section is polygonal, rather than round.

### **Drawing force**


$$F = A_1 \, \sigma_{f \, mean} \, \varphi \, \left( \frac{\mu}{\alpha} + \frac{2\alpha}{3\varphi} + 1 \right)$$


F drawing force

 $\sigma_{\!f\;mean}$  mean flow stress

 $\mu$  friction coefficient

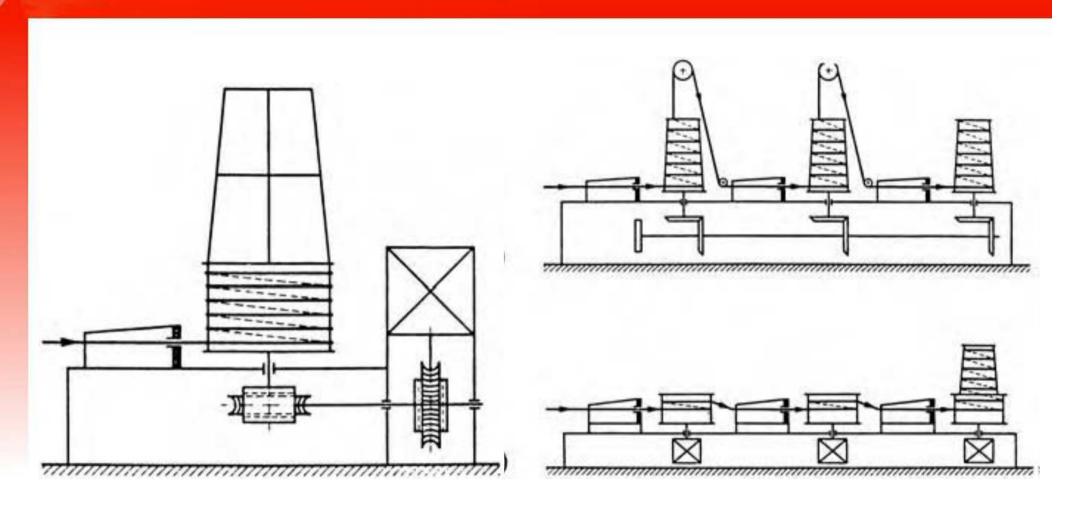
 $2\alpha$  cone angle (radian)





Optimal drawing angle:  $2\alpha \approx 16^{\circ}$ 

### **Drawing speeds**


#### Single

| Material         | Intake strength R <sub>m</sub> in N/mm <sup>2</sup> | υ <sub>max</sub> in m/s |
|------------------|-----------------------------------------------------|-------------------------|
|                  | (iron wire)                                         | 20                      |
|                  | 400                                                 |                         |
| Steel wire       | 800                                                 | 15                      |
|                  | 1300                                                | 10                      |
| Cu (soft)        | 250                                                 | 20                      |
| Brass, bronze    | 400                                                 | 20                      |
| Al and Al alloys | 80 - 100                                            | 25                      |

#### **Tandem**

Drawing speed differs at every drawing stage. As the volume is constant, the speed is getting higher because the wire cross-section is reduced.

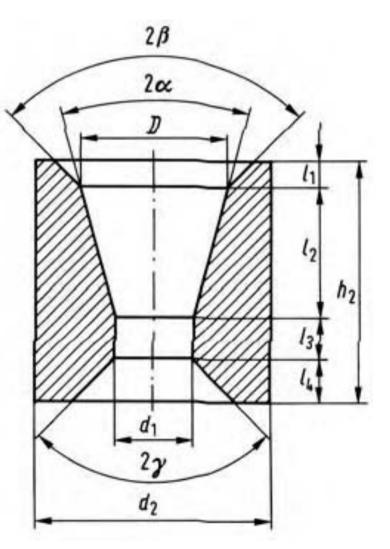
## **Drawing equipment**



single tandem

## **Drawing tools**

#### Three zones:


- cone-shaped intake (entry angle  $2\beta$  and approach angle  $2\alpha$ )
- bearing land
- cone-shaped back relief (relief angle 2γ)

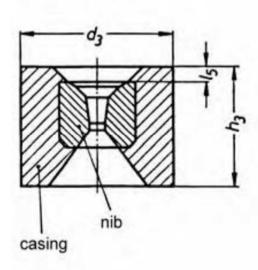
The length of the cylindrical guiding land:

$$l_3 = 0.15 \cdot d_1$$

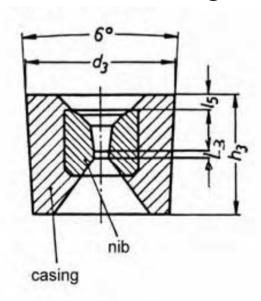
The approach angle  $2\alpha$  influences the drawing force and the surface finish of the wire (ref.: optimal angle).

There are dies for profile drawing as well.

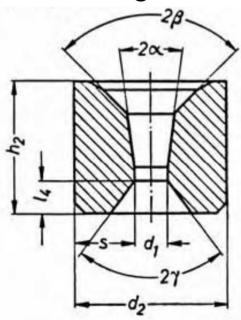



## Drawing die materials

#### Steel drawing dies


| Material                             | HRC working hardness | Fields of application |
|--------------------------------------|----------------------|-----------------------|
| 1.2203<br>1.2453<br>1.2080<br>1.2436 | 63 – 67              | Rod and tube drawing  |

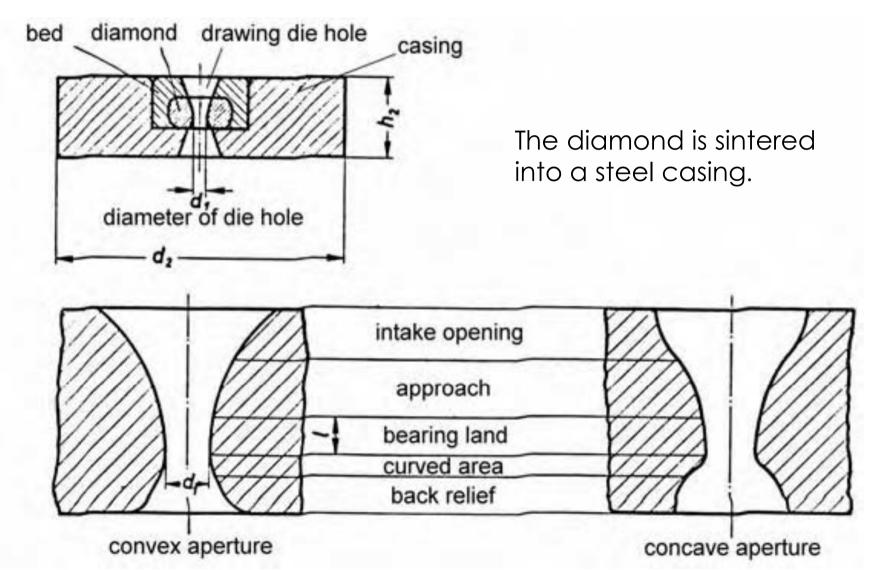
#### Carbide drawing dies (Typical designs)


Cylindrical casing



Conical casing




Enlarged die

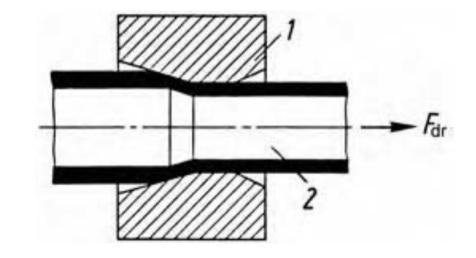


## Drawing die materials

#### Diamond drawing dies

For drawing fine and ultra-fine wires (1.5 mm to 0.01 mm) made of copper, steel, tungsten and molybdenum.

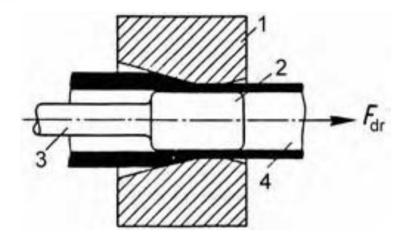



### **Tube drawing**

Drawing of hollow parts, where the outside is formed by a drawing die hole and the inside by a plug or a rod.

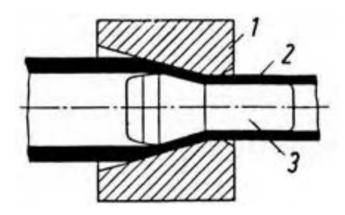
### **Tube drawing processes**

Drawing without a mandrel (tube sinking)


- no support from inside
- only the external diameter's tolerance is good
- only applied to tubes with smaller internal diameters



1 Drawing die, 2 workpiece

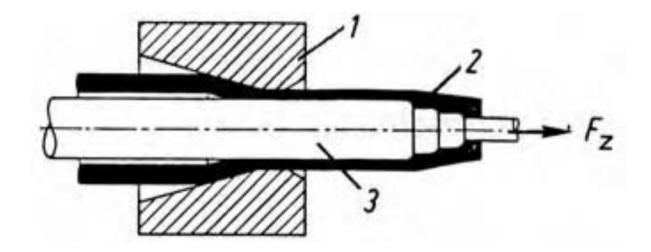

### **Tube drawing**

Drawing over a stationary mandrel (plug)



1 drawing ring, 2 workpiece, 3 mandrel, 4 plug

Drawing over a floating plug




1 drawing ring, 2 workpiece, 3 floating plug

### **Tube drawing**

Drawing over a moving mandrel

The rod and the tube are simultaneously moving in the drawing direction.



1 Drawing ring, 2 workpiece, 3 moving mandrel


### Strain and drawing force

#### Limit

The limit for the deformation comes from the required drawing force.

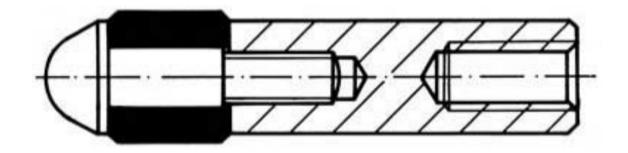
$$F_{drawing} < F_{perm}$$
.

$$F_{perm.} = A_1 \sigma_{flow 1}$$



$$F_{drawing} = \frac{A_1 \sigma_{flow \, mean} \, \varphi}{\eta}$$

$$\eta = 0.4 - 0.6 \quad for \quad \varphi = 0.15$$


$$\eta = 0.7 - 0.8 \quad for \quad \varphi = 0.50$$

## Strain and drawing force

| Type of drawing | Permissible deformation, cross area in % (from drawing force) | Principal strain $\varphi_p$ (–)                                                      |
|-----------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Tube sinking    | 20 – 50                                                       | $\varphi_{p} = \ln \frac{d_{0}}{d_{1}}$ $\varphi_{p\%} = \varphi_{p} \cdot 100  (\%)$ |
| Plug drawing    | 30 – 50                                                       | $\varphi_{\mathbf{p}} = \ln \frac{A_0}{A_1}$                                          |
|                 |                                                               | $\varphi_{\mathbf{p}} = \ln \frac{D_0^2 - d_0^2}{D_1^2 - d_1^2}$                      |
| Rod drawing     | 40 – 60                                                       | $\varphi_{p(\%)} = \varphi_{p} \cdot 100  (\%)$                                       |

## **Drawing tools**

Steel body drawing mandrel with carbide tool:



Drawing mandrel with screwed-on carbide ring

### Lubrication - wire and tube drawing

**Tube drawing:** difficulty of maintaining a sufficiently thick lubricant film inside, at the *mandrel-tube interface*.

Drawing of rods: a common method is phosphate coating.

#### **Lubricating regimes**

**Wet drawing**, in which the dies and the rod are immersed completely in the lubricant.

**Dry drawing**, in which the surface of the rod to be drawn is coated with a lubricant by passing it through a box filled with the applied lubricant (stuffing box).

**Metal coating**, in which the rod or wire is coated with a soft metal, such as copper or tin, which acts as a solid lubricant.

**Ultrasonic vibration** of the dies and mandrels; in this process, vibrations reduce forces, improve surface finish and die life and allow larger reductions per pass without failure.

### Defects - wire and tube drawing

#### Cold forming - residual stresses

stress-corrosion cracking

warp deformation if a layer of material subsequently is

removed (machining, or grinding)

#### Rod and wire

center cracking (similar to those in extrusion)

seams longitudinal scratches or folds

(seams may open up during subsequent

forming operations)

die marks

## Flow through conical dies - Summary

#### Three techniques use conical die

extrusion, drawing (wire & rod) and reduction.

# The common basics may lead to one of the three, depending on the border conditions

Zero/small axial stress at ingoing  $\rightarrow$  wire / rod drawing

Zero axial stress at outgoing  $\rightarrow$  extrusion

Smaller than flow stress at ingoing  $\rightarrow$  reduction

## Wire, rod and tube drawing

Thank you for your attention!