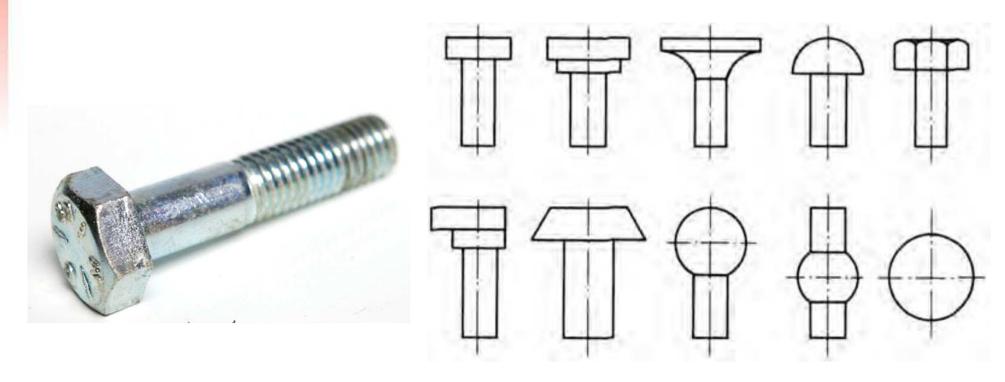


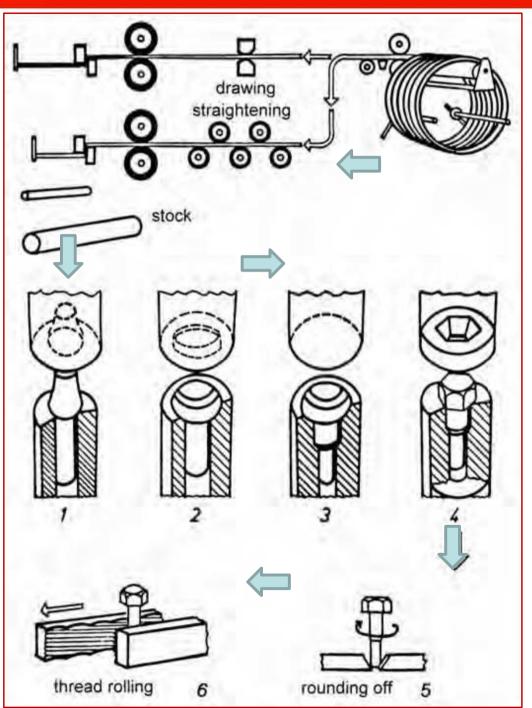
Upsetting, upset forging


Introduction

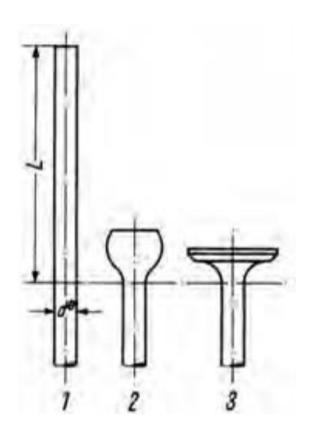
Definition:

Upset forging is a **bulk forming process** where the effect of the **pressure is on the longitudinal axis** of the workpiece.

Application:


Production of mass-produced parts: screws, rivets, head bolts, valves etc.

Introduction


Screw production

- 0 shear off stock
- 1 pre-form head
- 2 finish head
- 3 reduce shank to diameter for thread rolling
- 4 stamp out hexagon
- 5 chamfer shank (round off)
- 6 thread rolling

Introduction

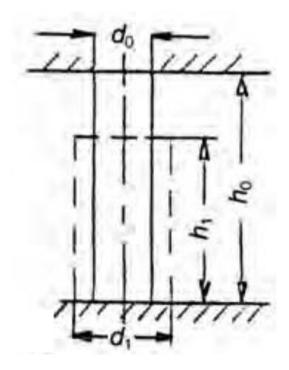
Engine valve

- 1 initial blank
- 2 preform (several steps, induction heated)
- 3 final heading

Limits - material

Limits: material and geometry

Material's formability



Equivalent logarithmic strain:

$$\varphi = \ln \frac{h_0}{h_1} = 2\ln \frac{d_1}{d_0}$$



Limits - material

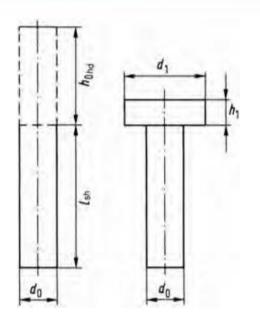
Permissible deformation for some materials

Material	φ_{max}
AI 99.88	2.5
Al MgSi 1	1.5 - 2.0
CuZn 37	1.2 – 1.4
St 42-St 50	1.3 - 1.5
34 CrMo 4	0.8 - 0.9
42 CrMo 4	0.7 - 0.8

Limits - geometry

buckling

- a) free length not inserted in the die
 - 1 bottom die
 - 2 ejector
 - 3 stock before upset forging;
- b) open-die upset forging between parallel surfaces

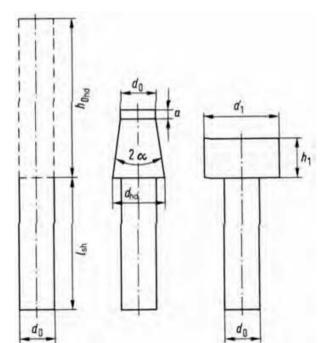

Upsetting ratio

$$s = \frac{h_0}{d_0}$$

h₀ - stock's free length

d₀ - initial diameter

Limits - geometry



Maximum upsetting ratio – forming in one step

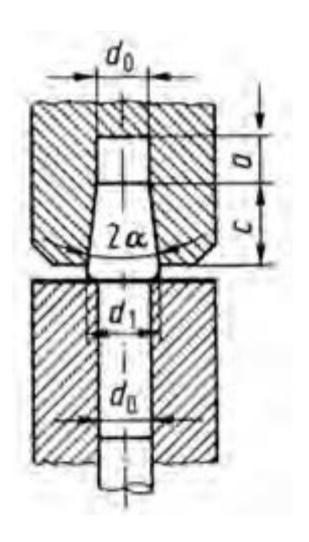
$$s = \frac{h_{0hd}}{d_0} < 2$$

h_{0hd} - stock's free length

d₀ - initial diameter

Maximum upsetting ratio – forming in two steps

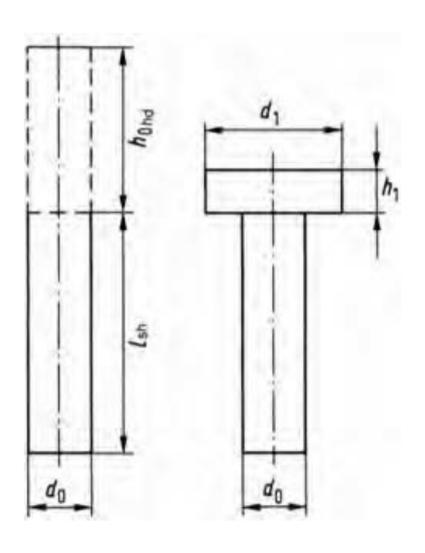
$$s = \frac{h_{0hd}}{d_0} < 4.5$$


h_{0hd} - stock's free length

d₀ - initial diameter

This case is typical for standard screw heads.

Preforming


Forming in two steps – pre-form shape

Upsetting ratio	Cone angle	Guide length	Length of the tapered part of the preformer
$s = h_0/d_0$	2α [degree]	<i>a</i> [mm]	<i>c</i> [mm]
2.5	15	$0.6 d_0$	$1.37 d_0$
3.3	15	$1.0 d_0$	$1.56 d_0$
3.9	15	$1.4 d_0$	$1.66 d_0$
4.3	20	$1.7 d_0$	$1.66 d_0$
4.5	25	$1.9 d_0$	$1.45 d_0$

Calculations

Upsetting force

$$F = A_1 \cdot \sigma_{f1} \left(1 + \frac{1}{3} \mu \frac{d_1}{h_1} \right)$$

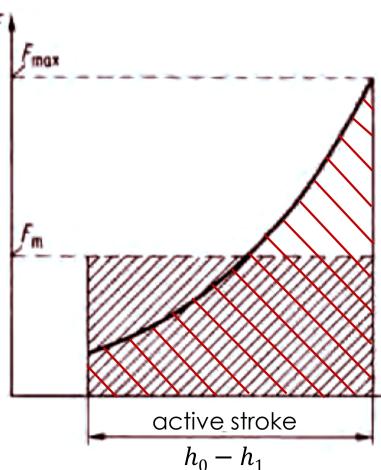
F - upsetting force

A₁ - surface after upset forging

 σ_{f1} - flow stress at the end of upsetting

 μ - coefficient of friction (0.1 – 0.15)

d₁ - diameter after upsetting


h₁ - height after upsetting

Calculations

Upsetting work

$$W = \frac{V \cdot \sigma_{fm} \cdot \varphi_{eq}}{\eta_F}$$

or
$$W = F(h_0 - h_1) \cdot x$$
$$x = \frac{F_{\text{m}}}{F_{\text{max}}} \quad x \cong 0.6$$

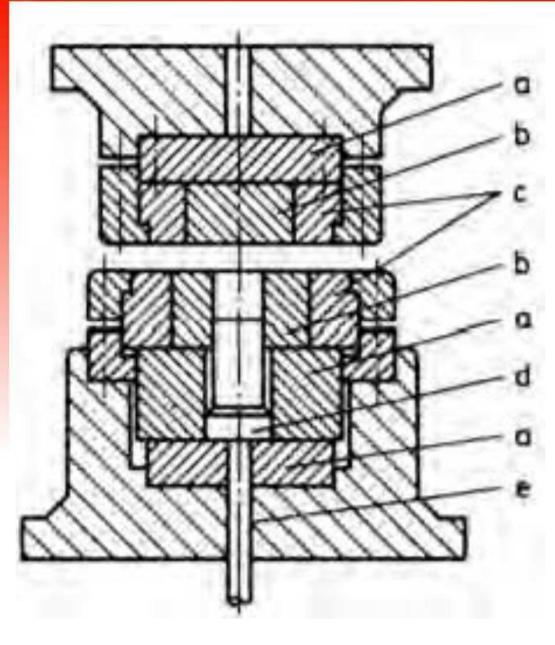
W - upsetting work

- volume involved in deformation

 σ_{fm} - mean flow stress

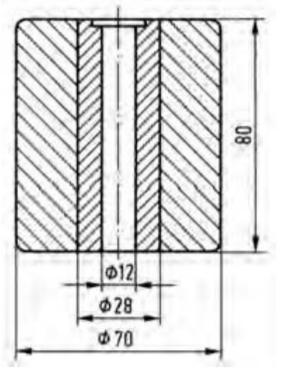
 $arphi_{ ext{eq}}$ - equivalent strain

- deformation efficiency (0.6 – 0.9)

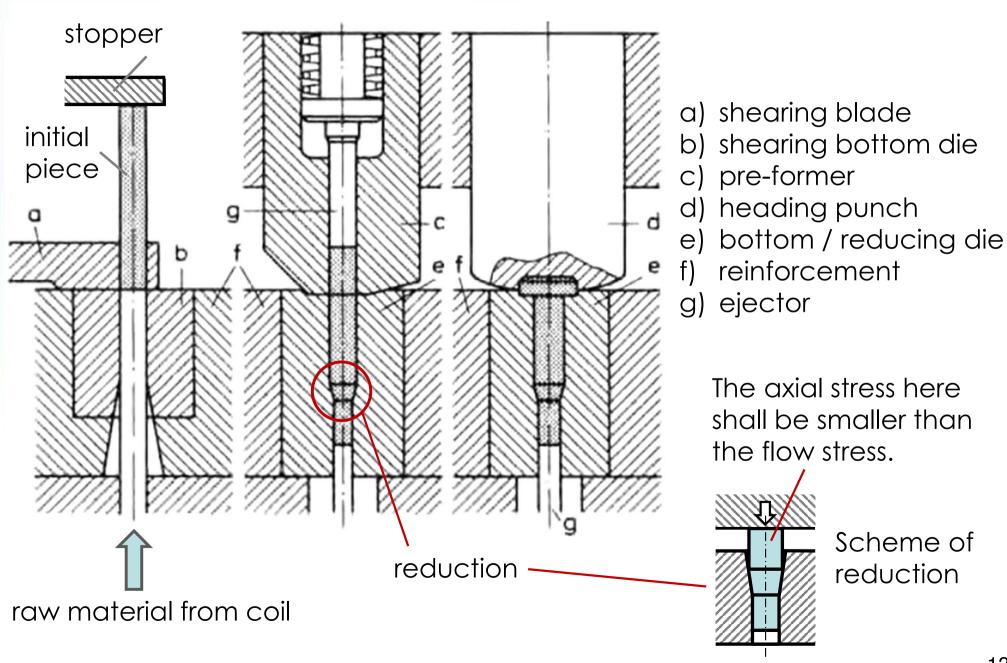

 h_0 - stock height

x - process factor

 $F_{\rm m}$ - mean force

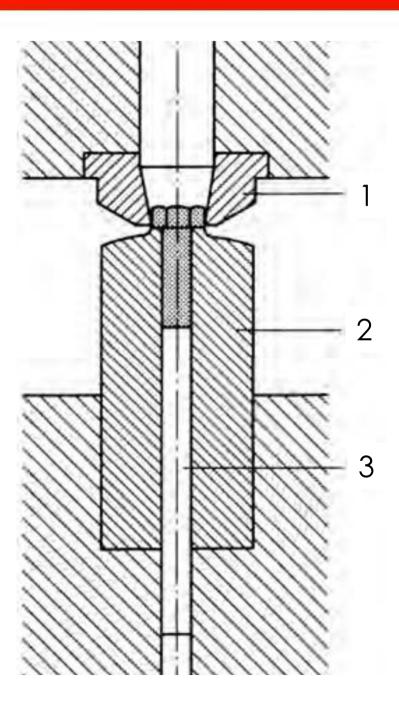

 F_{max} - maximum force

Tooling



- a) pressure plate
- b) punch (snap die)
- c) retaining ring (shrink fit)
- d) counterpunch
- e) ejector

Reinforced die


Tooling

Tooling

Cutting of the hexagonal head

- 1) cutting die
- 2) punch
- 3) ejector

Die materials for upsetting - 1

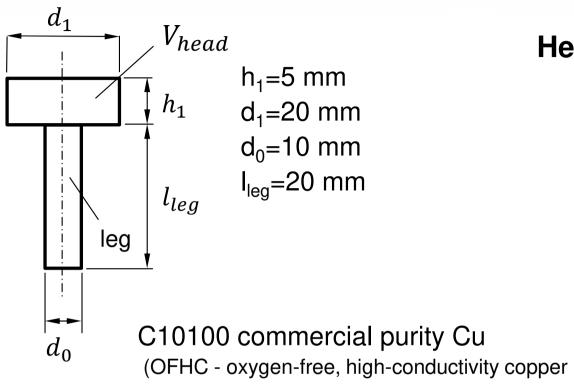
Description of the tool	Steel grade used for the to	Steel grade used for the tool		
	Short designation	Material no.	the tool HRC	
a) Shearing blade	X 155 CrVMo 12 1	1.2379	57 to 60	
	X 165 CrMoV 12	1.2601	57 to 60	
	S 6-5-2	1.3343	57 to 60	
	60 WCrV 7	1.2550	48 to 55	
b) Shearing bottom die	X 155 CrVMo 12 1	1.2379	57 to 60	
	X 165 CrMoV 12	1.2601	57 to 60	
	S 6-5-2	1.3343	57 to 60	
	60 WCrV 7	1.2550	54 to 58	
c) Solid pre-former	C 105 W 1	1.1545	57 to 60	
	100 V 1	1.2833	57 to 60	
	145 V 33	1.2838	57 to 60	
c) Shrunk pre-former	X 165 CrMoV 12	1.2601	60 to 63	
	S 6-5-2	1.3343	60 to 63	
d) Solid finishing punch	C 105 W1	1.1545	58 to 61	
	100 V 1	1.2833	58 to 61	
	145 V 33	1.2838	58 to 61	
d) Shrunk finishing punch	X 165 CrMoV 12	1.2601	60 to 63	
	S 6-5-2	1.3343	60 to 63	
I	I	I	I	

Die materials for upsetting - 2

e) Solid bottom die	C 105 W 1	1.1545	58 to 61
	100 V 1	1.2833	58 to 61
	145V33x	1.2838	58 to 61
e) Shrunk bottom die	S 6-5-2	1.3343	60 to 63
	X 155 CrVMo 12 1	1.2379	58 to 61
	X 165 CrMoV 12	1.2601	58 to 61
f) Retaining ring	56 NiCrMoV 7	1.2714	41 to 47
	X 40 CrMoV 5 1	1.2344	41 to 47
	X 3 NiCoMoTi 1895	1.2709	50 to 53
g) Ejector	X 40 CrMoV 5 1	1.2344	53 to 56
	60 WCrV 7	1.2550	55 to 58
Shearing tool: (slide 14, item 1)	·		
1 Bottom die	S 6-5-2	1.3343	58 to 61
2 Punch	60 WCrV 7	1.2550	58 to 61
	X 155 CrVMo 12 1	1.2379	58 to 61
	X 165 CrMoV 12	1.2601	58 to 61
3 Ejector	X 40 CrMoV 51	1.2344	53 to 56
	60 WCrV 7	1.2550	55 to 58

Precision

Cold upsetting tolerances


Nominal size in mm	5	10	20	30	40	50	100
Head height tolerance in mm	0.18	0.22	0.28	0.33	0.38	0.42	0.5
Head diam. tolerance in mm	0.12	0.15	0.18	0.20	0.22	0.25	0.3

Hot upsetting

Tolerances are approximately five times higher.

Defects

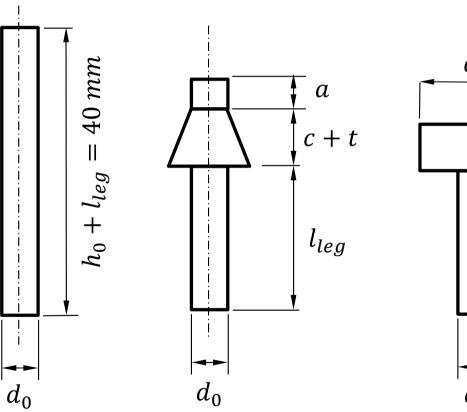
Defect	Cause	Solution
Buckling	Upsetting ratio is too high	Reduce by pre- forming
Longitudinal crack in the head	Die scars or surface damage in the starting material.	Check the stock for surface damage.
Shear cracks in the head Internal cracks in the head	Formability exceeded	Reduce degree of deformation Divide forming into two operations.

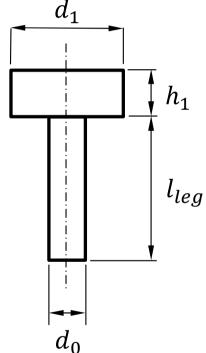
Upsetting ratio:

$$s = \frac{h_0}{d_0} = 2$$
 2 steps for safety max. for 1 step

Head volume:

$$V_{head} = \frac{d_1^2 \pi}{4} h_1 = 1570 \text{ mm}^3$$

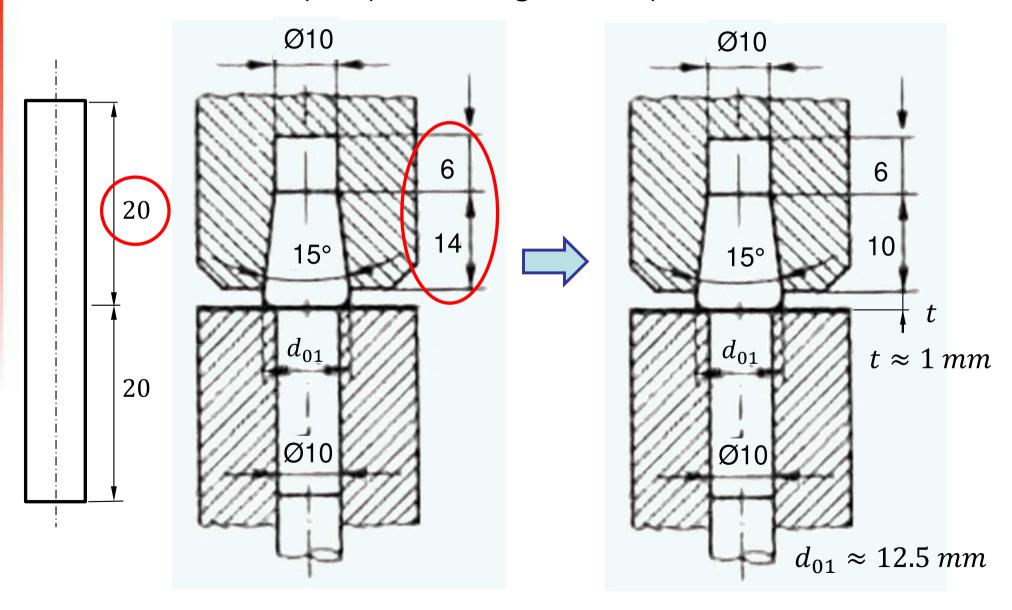

$$h_0 = 19,98 \cong 20 \text{ mm}$$


$$V_{head}$$

$$l_{sz}$$

Formability:
$$\varphi = ln\left(\frac{h_0}{h_1}\right) = ln\left(\frac{20}{5}\right) = 1,38$$
 good

Pre-form geometry:


Using the table on slide 9:

$$a = 0.6 d_0 = 6 mm$$

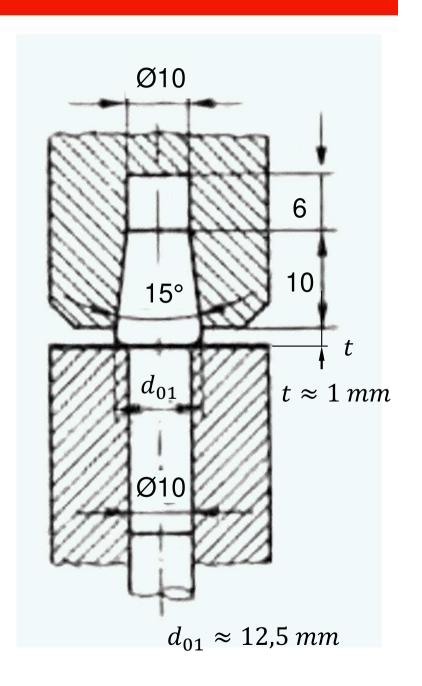
$$\alpha = 7.5^{\circ}$$
 $c = 1.37$

$$a = 0.6 d_0 = 6 mm$$
 $\alpha = 7.5^{\circ}$ $c = 1.37$ $d_0 = 13.7 mm$ \rightarrow 14 mm

Check the validity of pre-form geometry

Force at pre-forming

$$F_{01} = A_{01} \cdot \sigma_{f01} = \frac{d_{01}^2 \pi}{4} \cdot \sigma_{f01}$$

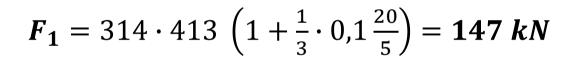

$$\varphi_{01} = 2 \ln \left(\frac{d_{01}}{d_0} \right) = 2 \ln \left(\frac{12.5}{10} \right) = 0.44$$

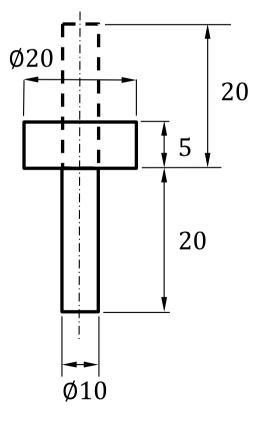
$$\sigma_{f01} = 84 + 286 \cdot \varphi_{01}^{0.442} = 283 \, MPa$$

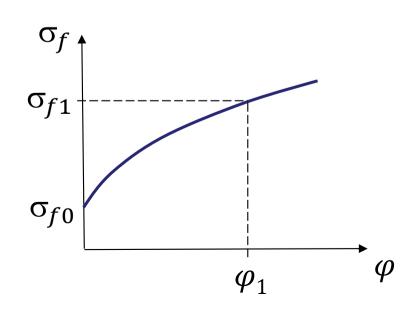
(also the axial stress on the punch)

$$F_{01} = 298 \ mm^2 \cdot 283 \ MPa$$

$$F_{01} = 84 \, kN$$




Force at ready forming

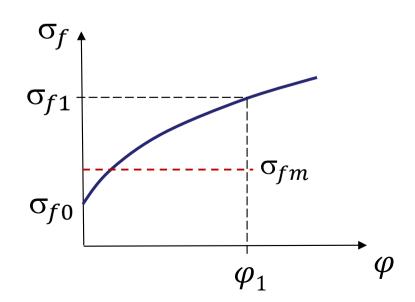

$$F_1 = A \cdot \sigma_{f1} \left(1 + \frac{1}{3} \mu \frac{d_1}{h_1} \right)$$

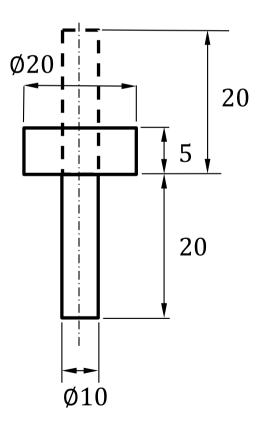
$$\sigma_f = C_1 + C_2 \varphi^n$$
 $\varphi_1 = 1.38$
$$\sigma_{f1} = 84 + 286 \cdot \varphi_1^{0.442} = 413 \, MPa$$

$$A = \frac{20^2 \pi}{4} = 314 \, mm^2$$

$$\mu = 0.1$$

$$A = \frac{20^2 \pi}{4} = 314 \ mm^2$$


Work at ready forming (Method 1)


$$W = rac{V_{head} \cdot \sigma_{fm} \cdot \varphi}{\eta}$$
 $\eta = 0.6 \dots 0.9$ let assume $\eta \cong 0.6$

$$\varphi_1 = 1.38$$

$$\sigma_{fm} = \frac{\sigma_{f0} + \sigma_{f1}}{2} = \frac{84 + 413}{2} = 249 MPa$$

$$W_{ready} = \frac{1570 \ mm^3 \cdot 249 \ MPa \cdot 1.38}{0.6} = 899 \ J$$

Making the two forming steps parallel

Assume, as it is usual, we are using such tooling and forming machine which makes possible to make the two steps parallel. Therefore, the total force at one machine stroke is the sum of the two forces:

$$F_{stroke} = F_{01} + F_1 = 84 + 147 = 231 \, kN$$

The total work at one stroke is the sum of the two works:

$$W_{stroke} = W_{pre} + W_{ready}$$

Estimated work at preforming (Δh_{01} active stroke is 20-6-10-1= 3 mm):

$$W_{pre} \approx F_{01} \cdot \Delta h_{01} = 84 \ kN \cdot 3 \ mm = 252 \ J$$

Total work at one machine stroke

$$W_{l\ddot{o}ket} = 252 + 899 = 1151 J$$

Power for parallel operation

Assume, the forming machine can make 80 strokes per minute (that means 80 workpieces), therefore the work for one second:

$$W = \frac{80}{60} W_{l\"{o}ket} = 1.33 \cdot 1151 J = 1531 J$$

The minimum required power and minimum loadability of the forming machine to perform the given technology:

$$P_{min} = 1.53 \text{ kW}$$

 $F_{min} = 231 \text{ kN}$

These are needed to select a machine, taking into consideration its efficiency.

In addition, the tooling has to be applicable on the forming machine to perform the given technology.

Thank you for your attention!