Metal Forming - BSc 2023/24-1

Strains - Stresses

Goal of forming technologies:

Permanently change the shape of the initial part by using a die set, while the properties of the workpiece material are also changing.

The formed piece resists the deformation, which generates stresses/forces as an answer for the deformation constraints.

The designing of the forming technology starts from the ready workpiece back to the available raw material, through the proper technology steps.

Deformation:

During forming operations elastic and plastic deformation happens.

The elastic part is reversible, and the plastic part is irreversible, it remains.
In several cases the elastic part is negligible.

Elastic deformation

Plastic deformation

Tensile and compression

Strain

$$
\varepsilon=\frac{l-l_{0}}{l_{0}}
$$

Stress

$$
\sigma=\frac{F}{S} \approx \frac{F}{S_{0}}
$$

In elastic state

$$
\sigma=E \varepsilon
$$

(Hooke's law)

tension

compression

Shear

Simple shear

$$
\tau=\frac{F}{S} \approx \frac{F}{S_{0}}
$$

Torsion

$$
\tau=\frac{M}{I_{p}} r
$$

$$
\tau=G \gamma
$$

Mechanical properties

 tensile, compression, torsion test
Tensile test

Standard tensile test results

Stress

Yield stress (MPa)

$$
\begin{aligned}
& R_{e}=\frac{F_{e}}{S_{0}} \\
& R_{e H}=\frac{F_{e H}}{S_{0}}, \quad R_{e L}=\frac{F_{e L}}{S_{0}} \\
& R_{p 0,2}=\frac{F_{p 0,2}}{S_{0}}
\end{aligned}
$$

Tensile strength (MPa)

$$
R_{m}=\frac{F_{m}}{S_{0}}
$$

Deformation

Contraction

$$
\mathrm{Z}=\frac{\mathrm{S}_{0}-\mathrm{S}_{\mathrm{u}}}{\mathrm{~S}_{0}} 100(\%)
$$

Elongation

(engineering strain at fracture)

$$
\mathrm{A}=\frac{\mathrm{L}_{u}-\mathrm{L}_{0}}{\mathrm{~L}_{0}} 100(\%)
$$

Engineering \& true strain

Engineering strain

$$
\begin{gathered}
d \varepsilon=\frac{d L}{L_{0}} \\
\varepsilon=\int_{L_{0}}^{L_{v}} \frac{d L}{L_{0}}=\frac{L_{v}-L_{0}}{L_{0}}=\frac{\Delta L}{L_{0}}
\end{gathered} \varphi=\int_{L_{0}}^{L_{v}} \frac{d L}{L}=\ln \frac{L_{v}}{L_{0}}
$$

Engineering \& true mechanical quantities

Engineering strain, stress
True strain, stress

$$
\begin{array}{llc}
\varepsilon=\frac{l-l_{0}}{l_{0}} & \varphi=\ln \frac{l}{l_{0}} \\
\varepsilon=\frac{S_{0}}{S}-1 & \varphi=\ln \frac{S_{0}}{S} \\
\hline \sigma^{\mathrm{M}}=\frac{\mathrm{F}}{\mathrm{~S}_{0}} & \text { Strain } & \sigma=\frac{\mathrm{F}}{\mathrm{~S}} \\
\hline \mathrm{~W}_{\mathrm{c}}=\int_{0}^{\varepsilon_{\mathrm{u}}} \sigma^{\mathrm{M}} \mathrm{~d} \varepsilon & \begin{array}{l}
\text { energy per unit } \\
\text { volume }\left(\mathrm{J} / \mathrm{cm}^{3}\right)
\end{array} & \mathrm{W}_{\mathrm{c}}=\int_{0}^{\varphi_{\mathrm{u}}} \sigma \mathrm{~d} \varphi
\end{array}
$$

Stress-strain curves

$$
\begin{gathered}
\mathrm{F}=\sigma \mathrm{S}=\sigma^{\mathrm{M}} \mathrm{~S}_{0} \Rightarrow \sigma=\sigma^{\mathrm{M}}(1+\varepsilon) \\
\varphi=\ln (1+\varepsilon)
\end{gathered}
$$

Strain

Stress state at contraction

$$
\begin{aligned}
& \sigma_{z z}=\bar{\sigma}\left[1+\ln \left(1+\frac{r_{\min }^{2}-r^{2}}{2 r_{\min } R_{g}}\right)\right] \\
& \sigma_{r r}=\sigma_{\varphi \varphi}=\sigma_{z z}-\bar{\sigma} \\
& \varphi_{z}=2 \ln \frac{d_{0}}{d_{\min }} \\
& \varphi_{r}=\varphi_{\varphi}=\ln \frac{d_{\min }}{d_{0}} \\
& \bar{\varphi}=\varphi_{z}
\end{aligned}
$$

$$
\bar{\sigma}-\mathrm{equivalent} \mathrm{stress}
$$

$$
\bar{\phi}-\text { equivalent strain }
$$

Linear elastic properties

Hooke's law

$$
\sigma=\mathrm{E} \varepsilon
$$

Elastic modulus:
E (Young-modulus)
Poisson ratio, v :

$$
v=-\frac{\varepsilon_{r}}{\varepsilon}
$$

metals: $\quad v \sim 0,33$
ceramics: $v \sim 0,25$
polymers: $v \sim 0,40$

units:

E: (GPa) or (MPa)
v : no dimension

Uniaxial load
ε_{r} - radial strain
$\mathrm{E}_{\text {ceramics }}>\mathrm{E}_{\text {metal }} \gg \mathrm{E}_{\text {polymer }}$

Linear elastic (shear) properties

Hooke's law

$$
\tau=\mathrm{G} \gamma
$$

Shear modulus, G

Bulk modulus, K

$$
\begin{aligned}
& \mathrm{p}=-\mathrm{K} \frac{\Delta \mathrm{~V}}{\mathrm{~V}_{\mathrm{O}}} \\
& K=\frac{E}{3(1-2 v)}
\end{aligned}
$$

$$
G=\frac{E}{2(1+v)}
$$

under hydrostatic pressure: initial volume: V_{0} volume change: $\Delta \mathrm{V}$

Ductile - brittle behavior

brittle - if the remaining (plastic) deformation ≈ 0 ductile - if the remaining (plastic) deformation is significant

Deformation - strain

continuum mechanical description

Motion of a body

The motion of the body is described in a coordinate system. The points, lines and volume elements of the body are described in this system during the deformation.

Stretch ratio, engineering strain

Stretch ratio

$$
\lambda=\frac{\mathrm{ds}}{\mathrm{dS}}
$$

Engineering strain

$$
\varepsilon=\frac{\mathrm{ds}-\mathrm{dS}}{\mathrm{dS}}=\frac{\mathrm{ds}}{\mathrm{dS}}-1=\lambda-1
$$

Logarithmic (true) strain

A (small) sphere in the environment of point P_{0} at $t=0$, will be transformed to an ellipsoid during the deformation.

Logarithmic (true) strain

$d S$ - sphere diameter, $d s_{i}-$ axes of ellipsoid, $\quad d s_{1}>d s_{2}>d s_{3}$

$$
\begin{aligned}
\varphi_{1}=\ln \lambda_{1} & =\ln \frac{d s_{1}}{d S}, \varphi_{2}=\ln \lambda_{2}=\ln \frac{d s_{2}}{d S}, \varphi_{3}=\ln \lambda_{3}=\ln \frac{d s_{3}}{d S} \\
\varphi & =\left[\begin{array}{ccc}
\varphi_{1} & 0 & 0 \\
0 & \varphi_{2} & 0 \\
0 & 0 & \varphi_{3}
\end{array}\right]
\end{aligned}
$$

Equivalent strain, stain rate

Tensor quantity characterized with a scalar value.

$$
\bar{\varepsilon}=\frac{\sqrt{2}}{3} \sqrt{\left(\varepsilon_{11}-\varepsilon_{22}\right)^{2}+\left(\varepsilon_{11}-\varepsilon_{33}\right)^{2}+\left(\varepsilon_{22}-\varepsilon_{33}\right)^{2}+6\left(\varepsilon_{12}^{2}+\varepsilon_{13}^{2}+\varepsilon_{23}^{2}\right)}
$$

This equivalent strain is used to compare different state of strains.

Strain rate

From velocity field: $\quad \xi_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)$
Equivalent strain rate:
$\bar{\xi}=\frac{\sqrt{2}}{3} \sqrt{\left(\xi_{11}-\xi_{22}\right)^{2}+\left(\xi_{11}-\xi_{33}\right)^{2}+\left(\xi_{22}-\xi_{33}\right)^{2}+6\left(\xi_{12}^{2}+\xi_{13}^{2}+\xi_{23}^{2}\right)}$
Equivalent strain: $\quad \bar{\varepsilon}=\int_{\mathrm{t}_{0}}^{\mathrm{t}} \bar{\xi} \mathrm{dt}$

Volume constancy

$$
d S_{1} d S_{2} d S_{3}=d s_{1} d s_{2} d s_{3} \Rightarrow \varphi_{1}+\varphi_{2}+\varphi_{3}=0
$$

Stress

continuum mechanical description

Volume and surface forces

External forces act on a body with V_{0} volume and A_{0} surface, therefor it undergoes deformation; Volume and surface changes to V and A respectively. The external forces can be volume and surface forces.

Surface force density

$$
\mathbf{t}=\lim _{\Delta A \rightarrow 0} \frac{\Delta \mathbf{F}}{\Delta A}
$$

Volume force density

$$
\mathbf{f}=\frac{1}{\rho^{\Delta V \rightarrow 0}} \lim \frac{\Delta \mathbf{F}}{\Delta V}
$$

Volume forces: weight, magnetic forces

Stress tensor

Cut the body into two and apply surface forces on the cut surface to keep on the equilibrium.

$$
\begin{aligned}
& t_{i}=\sigma_{i j} n_{j}, \quad \mathbf{t}=\boldsymbol{\sigma}^{T} \cdot \mathbf{n} \\
& t_{1}=\sigma_{11} n_{1}+\sigma_{12} n_{2}+\sigma_{13} n_{3} \\
& t_{2}=\sigma_{21} n_{1}+\sigma_{22} n_{2}+\sigma_{23} n_{3} \\
& t_{3}=\sigma_{31} n_{1}+\sigma_{32} n_{2}+\sigma_{33} n_{3}
\end{aligned}
$$

$$
\boldsymbol{\sigma}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right] \quad \boldsymbol{\sigma}-\text { Cauchy stress tensor }
$$

Stress tensor

$$
\boldsymbol{\sigma}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

Diagonal elements: normal stresses Off-diagonal elements: shear stresses

Normal stress: positive if tensile negative if compressive

Equivalent stress

Equivalent stress - by von Mises or Huber-Mises-Hencky theory

The tensor quantity characterized with a scalar value:

$$
\bar{\sigma}=\frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{11}-\sigma_{33}\right)^{2}+\left(\sigma_{22}-\sigma_{33}\right)^{2}+6\left(\sigma_{12}^{2}+\sigma_{13}^{2}+\sigma_{23}^{2}\right)}
$$

The equivalent stress is used to compare different state of stresses.

Stress states

Constitutive law
 Stress - strain relation

Plastic behavior of the material

von Mises yield criterion: $\quad f=\sigma_{\text {mises }}-\sigma_{\text {flow }}=0$ (or Huber-Mises-Hencky)

$$
\sigma_{\text {mises }}=\frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{33}-\sigma_{22}\right)^{2}+\left(\sigma_{11}-\sigma_{33}\right)^{2}+6\left(\sigma_{12}^{2}+\sigma_{12}^{2}+\sigma_{12}^{2}\right)}
$$

$\sigma_{\text {flow }}$ - flow stress, material property, measured value
The flow stress is needed to start then maintain the plastic deformation in uniaxial state of stress.

$$
\sigma_{\text {flow }}=\mathrm{F}(\text { eq. strain, eq. strain rate, temperature })
$$

$\begin{array}{lll}\text { Condition of plastic flow: } & f<0 & \text { elastic state } \\ & f=0 & \text { plastic deformation - flow } \\ & f>0 & \text { physically does not exist }\end{array}$

Plastic behavior of the material

Hardening

$$
\sigma_{\text {flow }}=\sigma_{\text {flow }}\left(\varphi^{p}, \dot{\varphi}^{p}, T\right)
$$

Plastic behavior of the material

Flow curves

for cold forming

$$
\begin{aligned}
\sigma_{f} & =C \bar{\varphi}^{n} \\
\sigma_{f} & =C_{1}+C_{2} \bar{\varphi}^{n} \\
\sigma_{f} & =C_{1}+C_{2} \bar{\varphi}^{n}-C_{3} e^{-C_{4} \bar{\varphi}}
\end{aligned}
$$

$$
\sigma_{f}=C_{0}+C_{1}\left(1-\exp \left(-C_{2} \bar{\varphi}\right)\right)+C_{3}\left(1-\exp \left(-C_{4} \bar{\varphi}\right)\right)+C_{5}\left(1-\exp \left(-C_{6} \bar{\varphi}\right)\right)
$$

for hot forming

$$
\begin{aligned}
& \sigma_{f}=C \overline{\dot{\varphi}}^{m} \\
& \sigma_{f}=\sigma_{f 0} \bar{\varphi}^{n}\left(\frac{\dot{\dot{\varphi}}}{\overline{\dot{\varphi}}_{0}}\right)^{m} \exp (-\beta \Delta T)
\end{aligned}
$$

