
Metal Forming – BSc 2023/24-1

Strains – Stresses



Permanently change the shape of the initial part 

by using a die set, while the properties of the 

workpiece material are also changing.

The formed piece resists the deformation, which 

generates stresses/forces as an answer for the 

deformation constraints.

The designing of the forming technology starts

from the ready workpiece back to the available 

raw material, through the proper technology steps.

Goal of forming technologies: 
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During forming operations elastic and plastic

deformation happens. 

The elastic part is reversible, and the plastic part 

is irreversible, it remains.

In several cases the elastic part is negligible.

Deformation: 
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1. Initial 2. Small load 3. Unload

Elastic – reversible

The volume is not 

constant during elastic 

deformation.
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Plastic – remaining

The volume is constant

during plastic deformation.

Plastic deformation
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In elastic state

σ = E ε
(Hooke’s law)
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Mechanical properties

tensile, compression, torsion test
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Tensile test
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True strain

Engineering & true strain

Engineering strain
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Engineering strain, stress True strain, stress 
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Elastic modulus: 

E  (Young-modulus)

Hooke’s law

σ = E ε

Poisson ratio,  ν:

metals: ν ~ 0,33
ceramics: ν ~ 0,25

polymers: ν ~ 0,40

units:

E:  (GPa) or (MPa)

ν:  no dimension

σ

Linear elastic
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Eceramics > Emetal >> Epolymer

Linear elastic properties
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Shear modulus,  G

τ = G γ

Bulk modulus,  K   
G =
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Engineering strain
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Deformation - strain

continuum mechanical description
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The motion of the body is described in a coordinate system. The
points, lines and volume elements of the body are described in
this system during the deformation.

Motion of a body



21

dS ds

Stretch ratio, engineering strain
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A (small) sphere in the environment of point P0 at t=0, 
will be transformed to an ellipsoid during the deformation.

1 1,x X

2 2,x X

3 3,x X

Logarithmic (true) strain
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dS – sphere diameter, dsi – axes of ellipsoid, ds1>ds2>ds3
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Equivalent strain, stain rate

Tensor quantity characterized with a scalar value.
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From velocity field:

Equivalent strain rate:

Equivalent strain:

This equivalent strain is used to compare different state of strains.
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Stress

continuum mechanical description
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External forces act on a body with

V0 volume and A0 surface, therefor

it undergoes deformation; Volume

and surface changes to V and A

respectively. The external forces

can be volume and surface forces.

Volume and surface forces

Volume forces:  weight, magnetic forces
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Equivalent stress – by von Mises or Huber-Mises-Hencky theory

Equivalent stress
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The equivalent stress is used to compare different state of stresses.
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Constitutive law

Stress - strain relation
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Plastic behavior of the material

Condition of plastic flow: f < 0 elastic state
f = 0 plastic deformation – flow
f > 0      physically does not exist

von Mises yield criterion:
(or Huber-Mises-Hencky)
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����� – flow stress, material property, measured value

The flow stress is needed to start then maintain

the plastic deformation in uniaxial state of stress.

����� =  F ( eq. strain, eq. strain rate, temperature )
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Plastic behavior of the material

Hardening
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Plastic behavior of the material

Flow curves �����
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